首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   19篇
  国内免费   86篇
  2023年   8篇
  2022年   3篇
  2021年   11篇
  2020年   11篇
  2019年   19篇
  2018年   22篇
  2017年   19篇
  2016年   19篇
  2015年   26篇
  2014年   23篇
  2013年   53篇
  2012年   28篇
  2011年   33篇
  2010年   16篇
  2009年   42篇
  2008年   28篇
  2007年   20篇
  2006年   12篇
  2005年   23篇
  2004年   14篇
  2003年   11篇
  2002年   7篇
  2001年   13篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
排序方式: 共有480条查询结果,搜索用时 15 毫秒
471.
472.
For millennia self has been conjectured to be necessary for consciousness. But scant empirical evidence has been adduced to support this hypothesis. Inconsistent explications of “self” and failure to design apt experiments have impeded progress. Advocates of phenomenological psychiatry, however, have helped explicate “self,” and employed it to explain some psychopathological symptoms. In those studies, “self” is understood in a minimalist sense, sheer “for-me-ness.” Unfortunately, explication of the “minimal self” (MS) has relied on conceptual analysis, and applications to psychopathology have been hermeneutic, allowing for many degrees of interpretive latitude. The result is that MS’s current scientific status is analogous to that of the “atom,” at the time when “atom” was just beginning to undergo transformation from a philosophical to a scientific concept. Fortunately, there is now an opportunity to promote a similar transformation for “MS.” Discovery of the brain’s Default Mode Network (DMN) opened the door to neuroimaging investigations of self. Taking the DMN and other forms of intrinsic activity as a starting point, an empirical foothold can be established, one that spurs experimental research and that enables extension of research into multiple phenomena. New experimental protocols that posit “MS” can help explain phenomena hitherto not thought to be related to self, thereby hastening development of a mature science of self. In particular, targeting phenomena wherein consciousness is lost and recovered, as in some cases of Unresponsive Wakefulness Syndrome (UWS), allow for design of neuroimaging probes that enable detection of MS during non-conscious states. These probes, as well as other experimental protocols applied to NREM Sleep, General Anesthesia (GA), and the waking state, provide some evidence to suggest that not only can self and consciousness dissociate, MS might be a necessary precondition for conscious experience. Finally, these findings have implications for the science of consciousness: it has been suggested that “levels of consciousness” (LoC) is not a legitimate concept for the science of consciousness. But because we have the conceptual and methodological tools with which to refine investigations of MS, we have the means to identify a possible foundation—a bifurcation point—for consciousness, as well as the means by which to measure degrees of distance from that foundation. These neuroimaging investigations of MS position us to better assess whether LoC has a role to play in a mature science of consciousness.  相似文献   
473.
474.
Whereas neuroimaging studies of healthy subjects have demonstrated an association between the anterior cingulate cortex (ACC) and cognitive control functions, including response monitoring and error detection, lesion studies are sparse and have produced mixed results. Due to largely normal behavioral test results in two patients with medial prefrontal lesions, a hypothesis has been advanced claiming that the ACC is not involved in cognitive operations. In the current study, two comparably rare patients with unilateral lesions to dorsal medial prefrontal cortex (MPFC) encompassing the ACC were assessed with neuropsychological tests as well as Event-Related Potentials in two experimental paradigms known to engage prefrontal cortex (PFC). These included an auditory Novelty Oddball task and a visual Stop-signal task. Both patients performed normally on the Stroop test but showed reduced performance on tests of learning and memory. Moreover, altered attentional control was reflected in a diminished Novelty P3, whereas the posterior P3b to target stimuli was present in both patients. The error-related negativity, which has been hypothesized to be generated in the ACC, was present in both patients, but alterations of inhibitory behavior were observed. Although interpretative caution is generally called for in single case studies, and the fact that the lesions extended outside the ACC, the findings nevertheless suggest a role for MPFC in cognitive control that is not restricted to error monitoring.  相似文献   
475.
476.
ABSTRACT

Mentalizing, or thinking about others’ mental states, shapes social interactions. Older adults (OA) have reduced mentalizing capacities reflected by lower medial prefrontal cortex (mPFC) activation. The current study assessed if OA’ lower mPFC activation reflects less spontaneous mentalizing during person perception. Younger adults (YA) and OA viewed ingroup White and outgroup Black and Asian faces and completed a mentalizing task during fMRI. Afterward, they completed a task in which they inferred mental states from faces. Using an mPFC region defined by the mentalizing task, OA had lower activity than YA during person perception. OA’ mPFC activity toward faces positively related to their mentalizing outside the scanner. The extent of OA’ lower mPFC activation during person perception may depend on their actual detection of mental states in faces. Further, YA’, but not OA’, mPFC activity distinguished between outgroups. OA’ lower mentalizing-related mPFC activity may reduce their ability to individuate outgroup members.  相似文献   
477.
Numbsense is a phenomenon, wherein patients can correctly respond to somatosensory stimuli at a higher rate than expected by chance, but cannot perceive the same stimuli consciously. Previously, numbsense has been reported in tactile localization of stimuli on the patient’s own body. Here, we describe a patient with numbsense that involved touched objects. The patient could not recognize the majority of somatosensory stimuli after left parietal infarction, but could correctly select shape, texture, and object stimuli more frequently than expected by chance.  相似文献   
478.
Prior studies have observed selective neural responses in the adult human auditory cortex to music and speech that cannot be explained by the differing lower-level acoustic properties of these stimuli. Does infant cortex exhibit similarly selective responses to music and speech shortly after birth? To answer this question, we attempted to collect functional magnetic resonance imaging (fMRI) data from 45 sleeping infants (2.0- to 11.9-weeks-old) while they listened to monophonic instrumental lullabies and infant-directed speech produced by a mother. To match acoustic variation between music and speech sounds we (1) recorded music from instruments that had a similar spectral range as female infant-directed speech, (2) used a novel excitation-matching algorithm to match the cochleagrams of music and speech stimuli, and (3) synthesized “model-matched” stimuli that were matched in spectrotemporal modulation statistics to (yet perceptually distinct from) music or speech. Of the 36 infants we collected usable data from, 19 had significant activations to sounds overall compared to scanner noise. From these infants, we observed a set of voxels in non-primary auditory cortex (NPAC) but not in Heschl's Gyrus that responded significantly more to music than to each of the other three stimulus types (but not significantly more strongly than to the background scanner noise). In contrast, our planned analyses did not reveal voxels in NPAC that responded more to speech than to model-matched speech, although other unplanned analyses did. These preliminary findings suggest that music selectivity arises within the first month of life. A video abstract of this article can be viewed at https://youtu.be/c8IGFvzxudk .

Research Highlights

  • Responses to music, speech, and control sounds matched for the spectrotemporal modulation-statistics of each sound were measured from 2- to 11-week-old sleeping infants using fMRI.
  • Auditory cortex was significantly activated by these stimuli in 19 out of 36 sleeping infants.
  • Selective responses to music compared to the three other stimulus classes were found in non-primary auditory cortex but not in nearby Heschl's Gyrus.
  • Selective responses to speech were not observed in planned analyses but were observed in unplanned, exploratory analyses.
  相似文献   
479.
Defense attorneys in criminal cases are beginning to argue that their clients were biologically predisposed to committing their crimes and therefore were less responsible for their behavior. Indeed, if our brains cause our behavior, and our brains are the way they are because of genetic composition, insults, disease, and life experiences, it becomes difficult to argue that any punishment as justified retribution for behavior is cogent. In this essay, I address the question of whether understanding the neuroscience behind human behavior should alter our legal notion of responsibility. We will examine this query in greater detail, using violence as a case study, asking whether understanding the neuroscience underlying violent behavior impacts our notion of personal or legal culpability. I shall argue that it does not. I proceed by first briefly sketching what we know about human violence and the biology behind it. Then I turn to a quick discussion of psychopaths, their connections to violence, and what we think we know about the biology of their brains. Finally, I come to the question of whether we should consider violent people with specific brain abnormalities as mad or bad, which will feed into the question of whether such people are responsible for their criminal behavior. I conclude with some very general and very brief speculations on what this discussion has to tell us about nature of being human.  相似文献   
480.
Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to non-invasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号