首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   24篇
  国内免费   95篇
  2023年   8篇
  2022年   5篇
  2021年   11篇
  2020年   14篇
  2019年   22篇
  2018年   24篇
  2017年   21篇
  2016年   22篇
  2015年   27篇
  2014年   23篇
  2013年   59篇
  2012年   36篇
  2011年   39篇
  2010年   19篇
  2009年   46篇
  2008年   27篇
  2007年   18篇
  2006年   14篇
  2005年   24篇
  2004年   14篇
  2003年   14篇
  2002年   11篇
  2001年   15篇
  2000年   11篇
  1999年   3篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1983年   1篇
排序方式: 共有540条查询结果,搜索用时 31 毫秒
221.
222.
ABSTRACT

The identification-production framework suggests that aging is associated with a decline in production forms of repetition priming, particularly under test conditions that maximize response competition. The present study examined this prediction by testing young and healthy older adults in a single-encoding version of the verb generation task in which some items had one dominant verb response (low competition) or had no such dominant response (high competition). Further analyses examined whether priming and error rates were related to performance on neuropsychological tests purported to measure frontal lobe functioning. Priming was invariant across age groups and was not related to frontal lobe status in older adults, but frontal lobe status did predict task performance: low-frontal older adults made more errors than high-frontal older adults, particularly for high-competition items and items with high association strength. These results are not consistent with the identification-production framework, but are consistent with the conclusions that (a) aging is associated with invariance in the processes that support repetition priming in the verb generation task and (b) frontal lobe status in aging is related to verb generation performance.  相似文献   
223.
Behavioural and neuroimaging studies suggest that spontaneous and task-related thought processes share common cognitive mechanisms and neural bases. Lateral rostral prefrontal cortex (RPFC) is a brain region that has been implicated both in spontaneous thought and in high-level cognitive control processes, such as goal/subgoal integration and the manipulation of self-generated thoughts. We therefore propose that the recruitment of lateral RPFC may follow a U-shaped function of cognitive demand: relatively high in low-demand situations conducive to the emergence of spontaneous thought, and in high-demand situations depending on processes supported by this brain region. We used functional magnetic resonance imaging to investigate brain activity while healthy participants performed two tasks, each with three levels of cognitive demands, in a block design. The frequency of task-unrelated thoughts, measured by questionnaire, was highest in the low cognitive demand condition. Low and high cognitive demand conditions were each compared to the intermediate level. Lateral RPFC and superior parietal cortex were recruited in both comparisons, with additional activations specific to each contrast. These results suggest that RPFC is involved both when (a) task demands are low, and the mind wanders, and (b) the task requires goal/subgoal integration and manipulation of self-generated thoughts.  相似文献   
224.
The deterioration of performance over time is characteristic for sustained attention tasks. This so-called “performance decrement” is measured by the increase of reaction time (RT) over time. Some behavioural and neurobiological mechanisms of this phenomenon are not yet fully understood. Behaviourally, we examined the increase of RT over time and the inter-individual differences of this performance decrement. On the neurophysiological level, we investigated the task-relevant brain areas where neural activity was modulated by RT and searched for brain areas involved in good performance (i.e. participants with no or moderate performance decrement) as compared to poor performance (i.e. participants with a steep performance decrement). For this purpose, 20 healthy, young subjects performed a carefully designed task for simple sustained attention, namely a low-demanding version of the Rapid Visual Information Processing task. We employed a rapid event-related functional magnetic resonance imaging (fMRI) design. The behavioural results showed a significant increase of RT over time in the whole group, and also revealed that some participants were not as prone to the performance decrement as others. The latter was statistically significant comparing good versus poor performers. Moreover, high BOLD-responses were linked to longer RTs in a task-relevant bilateral fronto-cingulate-insular-parietal network. Among these regions, good performance was associated with significantly higher RT-BOLD correlations in the pre-supplementary motor area (pre-SMA). We concluded that the task-relevant bilateral fronto-cingulate-insular-parietal network was a cognitive control network responsible for goal-directed attention. The pre-SMA in particular might be associated with the performance decrement insofar that good performers could sustain activity in this brain region in order to monitor performance declines and adjust behavioural output.  相似文献   
225.
Selective attention in the presence of distraction is a key aspect of healthy cognition. The underlying neurobiological processes, have not, however, been functionally well characterized. In the present study, we used functional magnetic resonance imaging to determine how ecologically relevant distracting noise affects cortical activity in 27 healthy adults during two versions of the visual Sustained Attention To Response Task (SART) that differ in difficulty (and thus attentional load). A significant condition (noise or silence) by task (easy or difficult) interaction was observed in several areas, including dorsolateral prefrontal cortex (DLPFC), fusiform gyrus (FG), posterior cingulate (PCC), and pre-supplementary motor area (PreSMA). Post hoc analyses of interaction effects revealed deactivation of DLPFC, PCC, and PreSMA during distracting noise under conditions of low attentional load, and activation of FG and PCC during distracting noise under conditions of high attentional load. These results suggest that distracting noise may help alert subjects to task goals and reduce demands on cortical resources during tasks of low difficulty and attentional load. Under conditions of higher load, however, additional cognitive resources may be required in the presence of noise.  相似文献   
226.
The frontal oculomotor cortex is known to play an important role in oculomotor selection. The aim of the current study was to examine whether previously observed findings concerning the role of the frontal oculomotor cortex in the speed of saccade initiation and oculomotor inhibition might be related to a common underlying role of these areas in oculomotor selection. To this end, six patients with lesions to the frontal oculomotor cortex performed a double stimulus paradigm in which two elements were presented simultaneously in close proximity. Patients performed a block in which no specific task instruction was given and a block in which an instruction was provided about which of the two elements was the target. The rationale behind this manipulation was that the introduction of a specific task instruction would require a stronger involvement of top-down factors. In contrast to the block without a specific task instruction, saccade latencies to the contralesional visual field were longer than the ipsilesional visual field when a task instruction was given. This effect was strongest for saccades that landed away from the target and the distractor, reflecting trials in which strong oculomotor inhibition was applied. The observed deficits can be explained in terms of a slowing of the inhibitory signals associated with the rejection of a distractor. Given the known role of the Frontal Eye Fields and the location of the lesions, we attribute these findings to the Frontal Eye Fields, revealing their important role in the voluntary control of eye movements.  相似文献   
227.
The concept of a motor program has been used to interpret a diverse range of empirical findings related to preparation and initiation of voluntary movement. In the absence of an underlying mechanism, its explanatory power has been limited to that of an analogy with running a stored computer program. We argue that the theory of cortical cell assemblies suggests a possible neural mechanism for motor programming. According to this view, a motor program may be conceptualized as a cell assembly, which is stored in the form of strengthened synaptic connections between cortical pyramidal neurons. These connections determine which combinations of corticospinal neurons are activated when the cell assembly is ignited. The dynamics of cell assembly ignition are considered in relation to the problem of serial order. These considerations lead to a plausible neural mechanism for the programming of movements and movement sequences that is compatible with the effects of precue information and sequence length on reaction times. Anatomical and physiological guidelines for future quantitative models of cortical cell assemblies are suggested. By taking into account the parallel, re-entrant loops between the cerebral cortex and basal ganglia, the theory of cortical cell assemblies suggests a mechanism for motor plans that involve longer sequences. The suggested model is compared with other existing neural network models for motor programming.  相似文献   
228.
ABSTRACT. The effect of aerobic exercise on primary motor cortical excitability is a relevant area of interest for both motor learning and motor rehabilitation. Transient excitability changes that may follow an exercise session are a necessary precursor to more lasting neuroplastic changes. While the number of studies is limited, research suggests that a session of aerobic exercise can create an ideal environment for the early induction of plasticity. Potential mechanisms include the upregulation of neurotransmitter activity, altered cerebral metabolism and cortisol levels, and increases in brain-derived neurotrophic factor. While there is considerable evidence that chronic physical activity positively impacts brain health and function, studies examining cortical excitability changes and motor performance after a single session of exercise are lacking. Further research is required to determine the clinical utility and feasibility of aerobic exercise.  相似文献   
229.
The neural mechanisms underlying the spontaneous, stimulus-independent emergence of intentions and decisions to act are poorly understood. Using a neurobiologically realistic model of frontal and temporal areas of the brain, we simulated the learning of perception–action circuits for speech and hand-related actions and subsequently observed their spontaneous behaviour. Noise-driven accumulation of reverberant activity in these circuits leads to their spontaneous ignition and partial-to-full activation, which we interpret, respectively, as model correlates of action intention emergence and action decision-and-execution. Importantly, activity emerged first in higher-association prefrontal and temporal cortices, subsequently spreading to secondary and finally primary sensorimotor model-areas, hence reproducing the dynamics of cortical correlates of voluntary action revealed by readiness-potential and verb-generation experiments. This model for the first time explains the cortical origins and topography of endogenous action decisions, and the natural emergence of functional specialisation in the cortex, as mechanistic consequences of neurobiological principles, anatomical structure and sensorimotor experience.  相似文献   
230.
Sörqvist, P. & Sætrevik, B. (2010). The neural basis of updating: Distinguishing substitution processes from other concurrent processes. Scandinavian Journal of Psychology, 51, 357–362. Most previous studies of updating processes have not been able to contrast processes of substituting items in memory with other concurrent processes. In the present investigation, we used a new task called “number updating” and an fMRI protocol to contrast the activation of trials that require item substitution (adding a new item to the working memory representation and suppressing an old item) with trials that involve no substitution (discarding the new item). Trials that require item substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, areas typically seen activated for working memory tasks in general. Trials that do not require substitution activated the anterior medial frontal cortex. Studies examining executive functions have associated this area with cognitive conflict, and may represent suppression of the substitution processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号