首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1008篇
  免费   16篇
  国内免费   2篇
  1026篇
  2024年   5篇
  2023年   4篇
  2022年   6篇
  2021年   8篇
  2020年   20篇
  2019年   19篇
  2018年   9篇
  2017年   10篇
  2016年   36篇
  2015年   19篇
  2014年   26篇
  2013年   52篇
  2012年   16篇
  2011年   10篇
  2010年   10篇
  2009年   47篇
  2008年   75篇
  2007年   73篇
  2006年   59篇
  2005年   72篇
  2004年   56篇
  2003年   60篇
  2002年   61篇
  2001年   39篇
  2000年   58篇
  1999年   39篇
  1998年   33篇
  1997年   33篇
  1996年   21篇
  1995年   20篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
排序方式: 共有1026条查询结果,搜索用时 0 毫秒
171.
The binary choice polytope appeared in the investigation of the binary choice problem formulated by Guilbaud and Block and Marschak. It is nowadays known to be the same as the linear ordering polytope from operations research (as studied by Grötschel, Jünger and Reinelt).The central problem is to find facet-defining linear inequalities for the polytope. Fence inequalities constitute a prominent class of such inequalities (Cohen and Falmagne; Grötschel, Jünger and Reinelt). Two different generalizations exist for this class: the reinforced fence inequalities of Leung and Lee, and independently Suck, and the stability-critical fence inequalities of Koppen. Together with the fence inequalities, these inequalities form the fence family. Building on previous work on the biorder polytope by Christophe, Doignon and Fiorini, we provide a new class of inequalities which unifies all inequalities from the fence family. The proof is based on a projection of polytopes. The new class of facet-defining inequalities is related to a specific class of weighted graphs, whose definition relies on a curious extension of the stability number. We investigate this class of weighted graphs which generalize the stability-critical graphs.  相似文献   
172.
MV-Algebras and Quantum Computation   总被引:2,自引:1,他引:1  
We introduce a generalization of MV algebras motivated by the investigations into the structure of quantum logical gates. After laying down the foundations of the structure theory for such quasi-MV algebras, we show that every quasi-MV algebra is embeddable into the direct product of an MV algebra and a “flat” quasi-MV algebra, and prove a completeness result w.r.t. a standard quasi-MV algebra over the complex numbers. Presented by Heinrich Wansing  相似文献   
173.
Frank Zenker 《Argumentation》2006,20(2):227-236
A proposal by Ferguson [2003, Argumentation 17, 335–346] for a fully monotonic argument form allowing for the expression of defeasible generalizations is critically examined and rejected as a general solution. It is argued that (i) his proposal reaches less than the default-logician’s solution allows, e.g., the monotonously derived conclusion is one-sided and itself not defeasible. (ii) when applied to a suitable example, his proposal derives the wrong conclusion. Unsuccessful remedies are discussed.  相似文献   
174.
This paper makes a point about the interpretation of the simplestquantified modal logic, that is, quantified modal logic witha single domain. It is commonly assumed that the domain in questionis to be understood as the set of all possibile objects. Thepoint of the paper is that this assumption is misguided.  相似文献   
175.
We investigate certain aspects of the first-order theory oforthogonality structures - structures consisting of a domainof lines subject to a binary orthogonality relation. In particular,we establish definitions of various geometric and algebraicnotions in terms of orthogonality, describe the constructionof extremal subspaces using orthogonality, and show that thefirst-order theory of line orthogonality in the Euclidean n-spaceis not 0-categorical for n 3.  相似文献   
176.
Within the program of finding axiomatizations for various parts of computability logic, it was proven earlier that the logic of interactive Turing reduction is exactly the implicative fragment of Heyting’s intuitionistic calculus. That sort of reduction permits unlimited reusage of the computational resource represented by the antecedent. An at least equally basic and natural sort of algorithmic reduction, however, is the one that does not allow such reusage. The present article shows that turning the logic of the first sort of reduction into the logic of the second sort of reduction takes nothing more than just deleting the contraction rule from its Gentzen-style axiomatization. The first (Turing) sort of interactive reduction is also shown to come in three natural versions. While those three versions are very different from each other, their logical behaviors (in isolation) turn out to be indistinguishable, with that common behavior being precisely captured by implicative intuitionistic logic. Among the other contributions of the present article is an informal introduction of a series of new — finite and bounded — versions of recurrence operations and the associated reduction operations. Presented by Robert Goldblatt  相似文献   
177.
The paper presents predicate logical extensions of some subintuitionistic logics. Subintuitionistic logics result if conditions of the accessibility relation in Kripke models for intuitionistic logic are dropped. The accessibility relation which interprets implication in models for the propositional base subintuitionistic logic considered here is neither persistent on atoms, nor reflexive, nor transitive. Strongly complete predicate logical extensions are modeled with a second accessibility relation, which is a partial order, for the interpretation of the universal quantifier. Presented by Melvin Fitting  相似文献   
178.
If the language is extended by new individual variables, in classical first order logic, then the deduction system obtained is a conservative extension of the original one. This fails to be true for the logics with infinitary predicates. But it is shown that restricting the commutativity of quantifiers and the equality axioms in the extended system and supposing the merry-go-round property in the original system, the foregoing extension is already conservative. It is shown that these restrictions are crucial for an extension to be conservative. The origin of the results is algebraic logic. Presented by Daniele Mundici Supported by grant OTKA T43242.  相似文献   
179.
Lena Kurzen 《Synthese》2009,169(2):223-240
In this paper, a logic for reasoning about coalitional power is developed which explicitly represents agents’ preferences and the actions by which the agents can achieve certain results. A complete axiomatization is given and its satisfiability problem is shown to be decidable and EXPTIME-hard.  相似文献   
180.
Lou Goble 《Studia Logica》2007,85(2):171-197
The results of this paper extend some of the intimate relations that are known to obtain between combinatory logic and certain substructural logics to establish a general characterization theorem that applies to a very broad family of such logics. In particular, I demonstrate that, for every combinator X, if LX is the logic that results by adding the set of types assigned to X (in an appropriate type assignment system, TAS) as axioms to the basic positive relevant logic BT, then LX is sound and complete with respect to the class of frames in the Routley-Meyer relational semantics for relevant and substructural logics that meet a first-order condition that corresponds in a very direct way to the structure of the combinator X itself. Presented by Rob Goldblatt  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号