首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   5篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   25篇
  2018年   4篇
  2017年   16篇
  2016年   18篇
  2015年   12篇
  2014年   8篇
  2013年   14篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1991年   1篇
  1987年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有125条查询结果,搜索用时 31 毫秒
21.
Inter-segmental coordination can be influenced by chronic low back pain (CLBP). The sagittal plane lower extremities inter-segmental coordination pattern and variability, in conjunction with the pelvis and trunk, were assessed in subjects with and without non-specific CLBP during free-speed walking. Kinematic data were collected from 10 non-specific CLBP and 10 non-CLBP control volunteers while the subjects were walking at their preferred speed. Sagittal plane time-normalized segmental angles and velocities were used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify the trunk-pelvis and bilateral pelvis-thigh, thigh-shank and shank-foot coordination pattern and variability over the stance and swing phases of gait. Mann-Whitney U test was employed to compare the means of DP and MARP values between two groups (same side comparison). Statistical analysis revealed more in-phase/less variable trunk-pelvis coordination in the CLBP group (P < 0.05). CLBP group demonstrated less variable right or left pelvis-thigh coordination pattern (P < 0.05). Moreover, the left thigh-shank and left shank-foot MARP values in the CLBP group, were more in-phase than left MARP values in the non-CLBP control group during the swing phase (P < 0.05). In conclusion, the sagittal plane lower extremities, pelvis and trunk coordination pattern and variability could be generally affected by CLBP during walking. These changes can be possible compensatory strategies of the motor control system which can be considered in the CLBP subjects.  相似文献   
22.
To determine the effects of speed on gait previous studies have examined young adults walking at different speeds; however, the small number of strides may have influenced the results. The aim of this study was to investigate the immediate and long-term impact of continuous slow walking on the mean, variability and structure of stride-to-stride measures. Fourteen young adults walked at a constant pace on a treadmill at three speeds (preferred walking speed (PWS), 90% and 80% PWS) for 30 min each. Spatiotemporal gait parameters were computed over six successive 5-min intervals. Walking slower significantly decreased stride length, while stride period and width increased. Additionally, stride period and width variability increased. Signal regularity of stride width increased and decreased in stride period. Persistence of stride period and width increased significantly at slower speeds. While several measures changed during 30 min of walking, only stride period variability and signal regularity revealed a significant speed and time interaction. Healthy young adults walking at slower than preferred speeds demonstrated greater persistence and signal regularity of stride period while spatiotemporal changes such as increased stride width and period variability arose. These results suggest that different control processes are involved in adapting to the slower speeds.  相似文献   
23.
Preferred walking speed (PWS) reflects the integrated performance of the relevant physiological sub-systems, including energy expenditure. It remains unclear whether the PWS during over-ground walking is chosen to optimize one’s balance control because studies on the effects of speed on the body’s balance control have been limited. The current study aimed to bridge the gap by quantifying the effects of the walking speed on the body’s center of mass (COM) motion relative to the center of pressure (COP) in terms of the changes and directness of the COM-COP inclination angle (IA) and its rate of change (RCIA). Data of the COM and COP were measured from fifteen young healthy males at three walking speeds including PWS using a motion capture system. The values of IAs and RCIAs at key gait events and their average values over gait phases were compared between speeds using one-way repeated measures ANOVA. With increasing walking speed, most of the IA and RCIA related variables were significantly increased (p < 0.05) but not for those of the frontal IA. Significant quadratic trends (p < 0.05) with highest directness at PWS were found in IA during single-limb support, and in RCIA during single-limb and double-limb support. The results suggest that walking at PWS corresponded to the COM-COP control maximizing the directness of the RCIAs over the gait cycle, a compromise between the effects of walking speed and the speed of weight transfer. The data of IA and RCIA at PWS may be used in future assessment of balance control ability in people with different levels of balance impairments.  相似文献   
24.
Carrying weight while walking is a common activity associated with increased musculoskeletal loading, but not all individuals accommodate to the weight in the same way. Different accommodation strategies could lead to different skeletal forces, stimuli for bone adaptation and ultimately bone competence. The purpose of the study was to explore the relationships between calcaneal bone competence and biomechanical accommodation variables measured during weighted walking. Twenty healthy men and women (10 each; age 27.8 ± 6.8 years) walked on a treadmill at 1.34 m/s while carrying 0, 44.5 and 89 N weights with two hands in front of the body. Peak vertical ground reaction force and sagittal plane angular displacements of the trunk and left lower extremity during weight acceptance were measured and used to quantify accommodation. Calcaneal bone stiffness index T-score (BST) was measured using quantitative ultrasound. Correlation and stepwise multiple regression were used to predict calcaneal BST from the accommodation variables. Accommodations of the foot and ankle explained 29 and 54% (p ≤ .015) of the variance in calcaneal BST in different regression models. Statistical resampling using 1000 replications confirmed the strength and consistency of relationships, with the best model explaining 94% of the variance in calcaneal BST. Individuals who change foot and ankle function when carrying heavier weight likely alter the control of gravitational and muscular forces, thereby affecting calcaneal loading, bone adaptation and bone competence. These novel findings illustrate the importance of gait accommodation strategies and highlight a potential clinical consequence that requires further investigation.  相似文献   
25.
Visual (i.e., optical flow) perturbations can be used to study balance control and balance deficits. However, it remains unclear whether walking balance control adapts to such perturbations over time. Our purpose was to investigate the propensity for visuomotor adaptation in walking balance control using prolonged exposure to optical flow perturbations. Ten subjects (age: 25.4 ± 3.8 years) walked on a treadmill while watching a speed-matched virtual hallway with and without continuous mediolateral optical flow perturbations of three different amplitudes. Each of three perturbation trials consisted of 8 min of prolonged exposure followed by 1 min of unperturbed walking. Using 3D motion capture, we analyzed changes in foot placement kinematics and mediolateral sacrum motion. At their onset, perturbations elicited wider and shorter steps, alluding to a more cautious, general anticipatory balance control strategy. As perturbations continued, foot placement tended toward values seen during unperturbed walking while step width variability and mediolateral sacrum motion concurrently increased. Our findings suggest that subjects progressively shifted from a general anticipatory balance control strategy to a reactive, task-specific strategy using step-to-step adjustments. Prolonged exposure to optical flow perturbations may have clinical utility to reinforce reactive, task-specific balance control through training.  相似文献   
26.
Objective: This study was designed to investigate whether whole-body scanning might promote healthy eating and physical activity in women, and to explore the effects of scanning on body image.

Design: Fourteen women aged 22–45 years without histories of eating disorders or whole-body scanning took part in semi-structured interviews before and after scanning. Data were analysed using inductive thematic analysis.

Results: Scans did not look as expected, and participants expressed ‘surprise’ and ‘shock’. Participants focused on perceived negative aspects of their bodies as revealed in scan images, and agreed that women with body concerns would find scans too ‘real’ and ‘raw’. Eleven women who met UK Government physical activity and healthy eating guidelines reported that the scan provided additional motivation to maintain, and in nine cases to increase, those behaviours. Two women who neither exercised nor ate healthily would not increase physical activity or change their diets significantly following scanning.

Conclusion: Whole-body scanning may enable maintenance or even acceleration of physical activity and healthy eating, but is unlikely to be useful in promoting initiation of these behaviours. Participants engaged in unhelpful body critique when viewing scans; scanning needs to be confined to contexts where support is provided, to avoid increasing body-related concerns.  相似文献   

27.
We describe new Fourier- and shape-based methods for quantifying variation in phase-portraits, and re-analyze previously-published ontogenetic and adult data [Clark, J. E., & Phillips, S. J. (1993). A longitudinal study of intralimb coordination in the first year of independent walking: A dynamical systems approach. Child Development, 64, 1143–1157]. Results show considerable variation between individuals and through development, but after 6 months of walking some gait patterns stabilize.  相似文献   
28.
The purpose of this study was to examine the effects of a 12 month exercise program on lower limb movement variability in patients with peripheral arterial disease (PAD). Participants (n = 21) with an appropriate history of PAD and intermittent claudication (IC) volunteered for this study and were randomly allocated to either a control group (CPAD–IC) (n = 11), which received normal medical therapy and a treatment group (TPAD–IC) (n = 10), which received normal medical therapy treatment and a 12 month supervised exercise program. All participants underwent 2D joint angular kinematic analysis during normal walking to assess lower limb movement variability and walking speed. Between-group differences were analyzed via mixed measures ANOVA. The 12 month supervised exercise program made no significant impact on the lower limb movement variability or walking speed of the TPAD–IC group as determined by either intralimb joint coordination or single joint analysis techniques. Long term supervised exercise programs do not appear to influence the lower limb movement variability of PAD–IC patients.  相似文献   
29.
Roll-over characteristics of able-bodied human subjects walking on ramped surfaces were examined in this study. Ten subjects walked at their normal self-selected speed on a level surface, a 5-deg ramp, and a 10-deg ramped surface. Ramps were designed such that ground reaction forces and center of pressure of the ground reaction forces could be measured on their surfaces. This set-up facilitated calculation of the effective rockers that the ankle-foot (AF) and knee-ankle-foot (KAF) systems conformed to during single-limb stance (contralateral toe off to contralateral heel contact). Since our original "roll-over shapes" were characterized between heel contact and opposite heel contact, we label the shapes found during single-limb stance as "truncated roll-over shapes". We hypothesized that the ankle-foot system would adapt to the various surfaces, creating a roll-over shape that would change in orientation with different levels of inclination. The truncated AF roll-over shapes supported this hypothesis for uphill walking but did not support the hypothesis for downhill walking. However, truncated roll-over shapes of the KAF system did adjust their orientation to match both the positive and negative levels of surface inclination. In general, the ankle appears to be the main adapting joint when walking up inclined surfaces while the knee becomes important for the overall adaptation in downhill walking. Knowledge of physiological lower-limb roll-over characteristics on ramped surfaces may help in the development of biomimetic prostheses and orthoses that will automatically adapt to changes in walking surface inclination.  相似文献   
30.
This study presents a technique for gait analysis, developed for the assessment of footfall timing and speed. The system in question consists of a transmitter, a receiver, a conductive walkway and a PC with the appropriate software.The technique was first tested for accuracy and repeatability with known signals, and was validated with a group of 20 healthy male adults (mean age = 34 years, S.D. = 5.5). The results thus obtained were similar to those reported in the literature for corresponding groups. Then, measurements on 10 children suffering from cerebral palsy (spastic hemiplegia) were performed. Gait analysis was carried out just before surgery and one year post-operatively. The results confirm the validity of the technique for measurements on orthopedic patients and its efficiency for functional evaluation of gait improvement after surgery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号