首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   2篇
  国内免费   15篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2014年   6篇
  2013年   3篇
  2012年   4篇
  2011年   7篇
  2010年   7篇
  2009年   12篇
  2008年   7篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   8篇
  2002年   1篇
  2001年   4篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
31.
Calcium (Ca2+) is involved in a myriad of cellular functions in the brain including synaptic plasticity. However, the role of intracellular Ca2+ stores in memory processing remains poorly defined. The current study explored a role for glutamate-dependent intracellular Ca2+ release in memory processing via blockade of metabotropic glutamate receptor subtype 1 (mGluR1) and inositol (1,4,5)-trisphosphate receptors (IP3Rs). Using a single-trial discrimination avoidance task developed for the young chick, administration of the specific and potent mGluR1 antagonist JNJ16259685 (500 nM, immediately post-training, ic), or the IP3R antagonist Xestospongin C (5 μM, immediately post-training, ic), impaired retention from 90 min post-training. These findings are consistent with mGluR1 activating IP3Rs to release intracellular Ca2+ required for long-term memory formation and have been interpreted within an LTP2 model. The consequences of different patterns of retention loss following ryanodine receptor (RyR) and IP3R inhibition are discussed.  相似文献   
32.
Most studies of long-term potentiation (LTP) have focused on potentiation induced by the activation of postsynaptic NMDA receptors (NMDARs). However, it is now apparent that NMDAR-dependent signaling processes are not the only form of LTP operating in the brain [Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44, 5–21]. Previously, we have observed that LTP in leech central synapses made by the touch mechanosensory neurons onto the S interneuron was NMDAR-independent [Burrell, B. D., & Sahley, C. L. (2004). Multiple forms of long-term potentiation and long-term depression converge on a single interneuron in the leech CNS. Journal of Neuroscience, 24, 4011–4019]. Here we examine the cellular mechanisms mediating T-to-S (T → S) LTP and find that its induction requires activation of metabotropic glutamate receptors (mGluRs), voltage-dependent Ca2+ channels (VDCCs) and protein kinase C (PKC). Surprisingly, whenever LTP was pharmacologically inhibited, long-term depression (LTD) was observed at the tetanized synapse, indicating that LTP and LTD were activated at the same time in the same synaptic pathway. This co-induction of LTP and LTD likely plays an important role in activity-dependent regulation of synaptic transmission.  相似文献   
33.
The marine snail, Aplysia californica, is a valuable model system for cell biological studies of learning and memory. Aplysia exhibits a reflexive withdrawal of its gill and siphon in response to weak or moderate tactile stimulation of its skin. Repeated tactile stimulation causes this defensive withdrawal reflex to habituate. Both short-term habituation, lasting <30 min, and long-term habituation, which can last >24 h, have been reported in Aplysia. Habituation of the withdrawal reflex correlates with, and is in part due to, depression of transmission at the monosynaptic connection between mechanoreceptive sensory neurons and motor neurons within the abdominal ganglion. Habituation-related short-term depression of the sensorimotor synapse appears to be due exclusively to presynaptic changes. However, changes within the sensory neuron, by themselves, do not account for more persistent depression of the sensorimotor synapse. Recent behavioral work suggests that long-term habituation in Aplysia critically involves postsynaptic processes, specifically, activation of AMPA- and NMDA-type receptors. In addition, long-term habituation requires activity of protein phosphatases, including protein phosphatases 1, 2A, and 2B, as well as activity of voltage-dependent Ca2+ channels. Cellular work has succeeded in demonstrating long-term, homosynaptic depression (LTD) of the sensorimotor synapse in dissociated cell culture and, more recently, LTD of the glutamate response of isolated motor neurons in culture (“hemisynaptic” LTD). These in vitro forms of LTD have mechanistic parallels to long-term habituation. In particular, homosynaptic LTD of the sensorimotor synapse requires elevated intracellular Ca2+ within the motor neuron, and hemisynaptic LTD requires activity of AMPA- and NMDA-type receptors. In addition, activation of group I and II metabotropic glutamate receptors (mGluRs) can induce hemisynaptic LTD. The demonstration of LTD in vitro opens up a promising new avenue for attempts to relate long-term habituation to cellular changes within the nervous system of Aplysia.  相似文献   
34.
It is well established that genetic deletion or pharmacological inhibition of the CB1 receptor disrupts extinction learning in aversive conditioning tasks, but not in appetitive tasks. Consistent with these findings is that genetic deletion or pharmacological inhibition of fatty acid amide hydrolase (FAAH), the primary catabolic enzyme of the endogenous cannabinoid anandamide (AEA), accelerates acquisition as well as extinction in aversive conditioning tasks. However, it is unknown whether FAAH blockade will affect acquisition in an appetitive conditioning task. Therefore, in the present study, we assessed FAAH (−/−) and (+/+) mice in appetitive and aversive Barnes maze conditioning procedures. Here we report that FAAH (−/−) mice displayed accelerated acquisition rates in an aversively-motivated, but not in the appetitively-motivated, Barnes maze task. The CB1 receptor antagonist, rimonabant attenuated enhanced acquisition in the aversive procedure, consistent with the idea that elevated AEA levels mediate this apparent nootropic effect. These findings support the hypothesis that stimulation of the endocannabinoid system enhances learned behavior in aversive, but not appetitive, conditioning paradigms.  相似文献   
35.
前额皮层去甲肾上腺素能神经支配主要来自脑干蓝斑核。前额皮层存在不同类型的肾上腺素能受体。其中突触后α2及β2肾上腺素能受体的激活提高工作记忆;α1及β1肾上腺素能受体的激活损害工作记忆。不同受体是通过激活不同的信号通路发挥对工作记忆的调节作用。来自人类被试的研究结果与对动物的研究结果之间尚存在不一致。了解前额皮层不同肾上腺素受体的作用为开发治疗与前额皮层功能失调相关疾病的药物提供了新的方向。  相似文献   
36.
王榕  陈小异  杜雪  蒋军 《心理科学进展》2022,30(10):2269-2277
近年众多研究表明,经皮迷走神经刺激(tVNS)作为一种新型、非侵入式的神经调控技术对个体的抑制控制功能具有积极的调节作用。已有研究发现, tVNS对抑制控制的调节作用可能是通过调控蓝斑核-去甲肾上腺素系统(LC-NE)的活动和神经递质GABA的浓度来实现的。然而,目前对tVNS调控抑制控制的神经机制仍存在诸多尚未明确的问题。未来研究在进一步优化tVNS的刺激参数后,可以从tVNS对抑制控制能力受损群体的调控作用及机制、如何实现和增强tVNS长期积极效应等方面进行深入探索。  相似文献   
37.
The dentate gyrus (DG) is among the few areas in the mammalian brain where production of new neurons continues in the adulthood. Although its functional significance is not completely understood, several lines of evidence suggest the role of DG neurogenesis in learning and memory. Considering that long-term potentiation (LTP) is a prime candidate for the process underlying hippocampal learning and memory, these results raise the possibility that LTP and neurogenesis are closely related. Here, we investigated whether or not LTP induction in the afferent pathway triggers enhanced proliferation of progenitor cells in the DG. LTP was induced by tetanic stimulation in perforant path-DG synapses in one hemisphere, and the number of newly generated progenitor (BrdU-labeled) cells in the DG was quantified. Compared with the control hemisphere (stimulated with low-frequency pulses), the LTP-induced hemisphere contained a significantly higher number of newly generated progenitor cells in the dorsal as well as ventral DG. When CPP, an NMDA receptor antagonist, was administered, tetanic stimulation neither induced LTP nor enhanced progenitor cell proliferation, indicating that NMDA receptor activation, rather than tetanic stimulation per se, is responsible for enhanced progenitor proliferation in the control animal. Our results show that tetanic stimulation of perforant path sufficient to induce LTP increases progenitor proliferation in adult DG in an NMDA receptor-dependent manner.  相似文献   
38.
39.
40.
Individual differences in the evaluation of affective stimuli, such as the positivity offset and negativity bias may have a biological basis. We tested whether two SNPs (HTR2A; 102T>C and HTR1A; 1019C>G) related to serotonin receptor function, a biological pathway associated with affective regulation, were differentially related to positivity offset and negativity bias for males and females. Participants were 109 cigarette smokers who rated a series of affective stimuli to assess reactions to positive and negative pictures. Gender × genotype interactions were found for both SNPs. Males with the 102T allele showed a greater positivity offset than males with the 102C allele. For females, in contrast, the 1019C allele was associated with a greater positivity offset than the 1019G allele, whereas the 102T allele was associated with a greater negativity bias than the 102C allele. Identifying how gender differences may moderate the effect of serotonin receptor genes on affective information processing may provide insight into their role in guiding behavior and regulating affect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号