首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   21篇
  国内免费   43篇
  2023年   6篇
  2022年   2篇
  2021年   13篇
  2020年   16篇
  2019年   16篇
  2018年   14篇
  2017年   19篇
  2016年   22篇
  2015年   13篇
  2014年   21篇
  2013年   47篇
  2012年   27篇
  2011年   24篇
  2010年   18篇
  2009年   31篇
  2008年   25篇
  2007年   30篇
  2006年   28篇
  2005年   18篇
  2004年   13篇
  2003年   10篇
  2002年   9篇
  2001年   13篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有448条查询结果,搜索用时 62 毫秒
11.
Although functional neuroimaging studies of human decision-making processes are increasingly common, most of the research in this area has relied on passive tasks that generate little individual variability. Relatively little attention has been paid to the ability of brain activity to predict overt behavior. Using functional magnetic resonance imaging (fMRI), we investigated the neural mechanisms underlying behavior during a dynamic decision task that required subjects to select smaller, short-term monetary payoffs in order to receive larger, long-term gains. The number of trials over which the longterm gains accrued was manipulated experimentally (2 versus 12). Event-related neural activity in right lateral prefrontal cortex, a region associated with high-level cognitive processing, selectively predicted choice behavior in both conditions, whereas insular cortex responded to fluctuations in amount of reward but did not predict choice behavior. These results demonstrate the utility of a functional neuroimaging approach in behavioral psychology, showing that (a) highly circumscribed brain regions are capable of predicting complex choice behavior, and (b) fMRI has the ability to dissociate the contributions of different neural mechanisms to particular behavioral tasks.  相似文献   
12.
The supplementary motor area (SMA) is thought to play in important role in the preparation and organisation of voluntary movement. It has long been known that cortical activity begins to increase up to 2s prior to voluntary self-initiated movement. This increasing premovement activity measured in EEG is known as the Bereitschaftspotential or readiness potential. Modern functional brain imaging methods, using event-related and time-resolved functional MRI techniques, are beginning to reveal the role of the SMA, and in particular the more anterior pre-SMA, in premovement activity associated with the readiness for action. In this paper we review recent studies using event-related time-resolved fMRI methods to examine the time-course of activation changes within the SMA throughout the preparation, readiness and execution of action. These studies suggest that the pre-SMA plays a common role in encoding or representing actions prior to our own voluntary self-initiated movements, during motor imagery, and from the observation of others' actions. We suggest that the pre-SMA generates and encodes motor representations which are then maintained in readiness for action.  相似文献   
13.
2003年诺贝尔医学奖给科学界的多重启示(上)   总被引:1,自引:0,他引:1  
2003年诺贝尔医学奖授予了两位美英物理学家,劳特布尔和曼斯菲尔德,表彰他们在磁共振成像方面的发现.这些发现导致现代磁共振技术的开发,这一技术标志着医学诊断学和科学研究中的一项突破.该项发现建筑在核磁和核磁共振现象被发现的基础之上.核磁现象的发现及其应用导致了1943、1944和1952年诺贝尔物理学奖的获得.核磁共振现象的发现及其应用导致了1991年和2002年诺贝尔化学奖的获得.这意味着,2003年诺贝尔医学奖是该系列发现中第六个诺贝尔科学奖.  相似文献   
14.
Pain-related avoidance factors and social resources, as assessed by pain coping and social support, are supposed to have lasting effects on functional disability and pain in chronic pain disorders. As a follow-up to a prospective study demonstrating short-term effects after one year (Behaviour Research and Therapy, 36, 179-193, 1998), the role of pain coping and social support at the time of diagnosis was investigated in relationship to the long-term course of functional disability and pain after three and five years in 78 patients with rheumatoid arthritis (RA), taking into account personality characteristics of neuroticism and extraversion, clinical status and use of medication. In line with findings at the one-year follow-up, results showed that more passive pain coping predicted functional disability at the three-year, but not the five-year follow-up. In addition, low levels of social support at the time of diagnosis consistently predicted both functional disability and pain at the three and five-year follow-ups. Results indicate that pain coping and social support, assessed very early in the disease process, can affect long-term functional disability and pain in RA, and suggest that early interventions focusing on pain-related avoidance factors and social resources for patients at risk may beneficially influence long-term outcomes in RA.  相似文献   
15.
In this study we investigated the correlation between individual linguistic ability based on performance levels and their engagement of typical and atypical language areas in the brain. Eighteen healthy subjects between 21 and 64 years participated in language ability tests, and subsequent functional MRI scans measuring brain activity in response to a sentence completion and a word fluency task. Performance in both reading and high-level language tests correlated positively with increased right-hemispheric activation in the inferior frontal gyrus (specifically Brodmann area 47), the dorsolateral prefrontal cortex (DLPFC), and the medial temporal gyrus (Brodmann area 21). In contrast, we found a negative correlation between performance and left-hemispheric DLPFC activation.Our findings indicate that the right lateral frontal and right temporal regions positively modulate aspects of language ability.  相似文献   
16.
We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing.  相似文献   
17.
Many differences in brain activity have been reported between persons who stutter (PWS) and typically fluent controls during oral reading tasks. An earlier meta-analysis of imaging studies identified stutter-related regions, but recent studies report less agreement with those regions. A PET study on adult dextral PWS (= 18) and matched fluent controls (CONT, = 12) is reported that used both oral reading and monologue tasks. After correcting for speech rate differences between the groups the task-activation differences were surprisingly small. For both analyses only some regions previously considered stutter-related were more activated in the PWS group than in the CONT group, and these were also activated during eyes-closed rest (ECR). In the PWS group, stuttering frequency was correlated with cortico-striatal-thalamic circuit activity in both speaking tasks. The neuroimaging findings for the PWS group, relative to the CONT group, appear consistent with neuroanatomic abnormalities being increasingly reported among PWS.  相似文献   
18.
Keeping aware of the locations of objects while one is moving requires the updating of spatial representations. As long as the objects are visible, attentional tracking is sufficient, but knowing where objects out of view went in relation to one's own body involves an updating of spatial working memory. Here, multiple object tracking was employed to study spatial updating and its neural correlates. In a dynamic 3D-scene, targets moved among visually indistinguishable distractors. The targets and distractors either stayed visible during continuous viewpoint changes or they turned invisible. The parametric variation of tracking load revealed load-dependent activations of the intraparietal sulcus, the superior parietal lobule, and the lateral occipital cortex in response to the attentive tracking task. Viewpoint changes with invisible objects that demanded retention and updating produced load-dependent activation only in the precuneus in line with its presumed involvement in updating spatial working memory.  相似文献   
19.
He D  Wu Q  Chen X  Zhao D  Gong Q  Zhou H 《Brain and cognition》2011,77(1):80-88
The objective of this study investigated cognitive impairments and their correlations with fractional anisotropy (FA) and mean diffusivity (MD) in patients with neuromyelitis optica (NMO) without visible lesions on conventional brain MRI during acute relapse. Twenty one patients with NMO and 21 normal control subjects received several cognitive tests to assess cognitive function. Head diffusion tensor imaging (DTI) of all patients with NMO were collected with a 3-T MR system. Correlations of cognitive test scores and whole brain FA and MD were examined by voxel-based analysis. Region-of-interest analysis was applied to the significantly correlated regions which the most frequently appeared. We found that NMO patients without visible brain lesions had significantly impaired learning and memory, decreased information processing speed, and damaged attention compared with normal control subjects. These impaired cognitive domains were significantly correlated with FA and MD in local regions of corpus callosum, anterior cingulate and medial frontal cortex. In corpus callosum of NMO patients, mean FA was significantly lower and mean MD higher than normal control subjects. Our findings suggest that cognitive impairments in learning and memory, information processing speed and attention occur in NMO patients without visible brain lesions during acute relapse. The impairments in immediate and short-term memory in NMO patients may be due to information encoding deficits in the process of information acquisition. The corpus callosum of such patients may have local microscopic damages that play a role in cognitive impairments during acute relapse.  相似文献   
20.
Neurobiological models suggest that adolescents are driven by an overactive ventral striatum (VS) response to rewards that may lead to an adolescent increase in risk-taking behavior. However, empirical studies showed mixed findings of adolescents’ brain response to rewards. In this study, we aimed to elucidate the relationship between reward-related brain activation and risky decision-making. In addition, we examined effects of age, puberty, and individuals’ reward sensitivity. We collected two datasets: Experiment 1 reports cross-sectional brain data from 75 participants (ages 10–25) who played a risky decision task. Experiment 2 presents a longitudinal extension in which a subset of these adolescents (n = 33) was measured again 2 years later. Results showed that (1) a reward-related network including VS and medial PFC was consistently activated over time, (2) the propensity to choose the risky option was related to increased reward-related activation in VS and medial PFC, and (3) longitudinal comparisons indicated that self-reported reward sensitivity was specifically related to VS activation over time. Together, these results advance our insights in the brain circuitry underlying reward processing across adolescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号