首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   17篇
  国内免费   81篇
  2023年   9篇
  2022年   3篇
  2021年   10篇
  2020年   11篇
  2019年   18篇
  2018年   22篇
  2017年   18篇
  2016年   19篇
  2015年   25篇
  2014年   20篇
  2013年   47篇
  2012年   27篇
  2011年   32篇
  2010年   16篇
  2009年   40篇
  2008年   25篇
  2007年   17篇
  2006年   11篇
  2005年   21篇
  2004年   14篇
  2003年   10篇
  2002年   7篇
  2001年   11篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
排序方式: 共有451条查询结果,搜索用时 0 毫秒
361.
Seligman和Maier(1967)在动物实验的基础上提出了著名的习得性无助理论,但在2016年,Maier和Seligman二人却联合发文对该理论进行了反思:从最新的神经生物学证据来看,习得性无助的经典理论概括存在基本错误,习得性无助并非习得而来!所谓“习得性”无助,实质上是动物对厌恶刺激长期作用的先天适应性反应,而非认知学习的结果。本文简要梳理习得性无助理论的起源与发展,深入分析这一反思的核心内容、依据及意义,对其中否定习得性无助理论概括的观点,从证据的充分性、研究范式的效度、规范概念等角度作了进行进一步的探讨,并结合新的实验范式对未来研究提出建议。  相似文献   
362.
Tourette syndrome (TS) is a neurological disorder of childhood onset that is characterized by the occurrence of motor and vocal tics. TS is associated with cortical-striatal-thalamic-cortical circuit [CSTC] dysfunction and hyper-excitability of cortical limbic and motor regions that are thought to lead to the occurrence of tics. Individuals with TS often report that their tics are preceded by ‘premonitory sensory/urge phenomena’ (PU) that are described as uncomfortable bodily sensations that precede the execution of a tic and are experienced as a strong urge for motor discharge. While the precise role played by PU in the occurrence of tics is largely unknown, they are nonetheless of considerable theoretical and clinical importance as they form a core component of many behavioural therapies used in the treatment of tic disorders. Recent evidence indicates that the cingulate cortex may play an important role in the generation of PU in TS, and in ‘urges-for-action’ more generally. In the current study, we utilized voxel-based morphometry (VBM) techniques, together with ‘seed-to-voxel’ structural covariance network (SCN) mapping, to investigate the putative role played by the cingulate cortex in the generation of motor tics and the experience of PU in a relatively large group of young people with TS. Whole-brain VBM analysis revealed that TS was associated with clusters of significantly reduced grey matter volumes bilaterally within: the orbito-frontal cortex; the cerebellum; and the anterior and mid-cingulate cortex. Similarly, analysis of SCNs associated with bilateral mid- and anterior cingulate ‘seed’ regions demonstrated that TS is associated with increased structural covariance primarily with the bilateral motor cerebellum; the inferior frontal cortex; and the posterior cingulate cortex.  相似文献   
363.
We investigated the consequences of premature birth on the functional neuroanatomy of the dorsal stream of visual processing. fMRI was recorded while sixteen healthy participants, 8 (two men) adults (19 years 6 months old, SD 10 months) born premature (mean gestational age 30 weeks), referred to as Premas, and 8 (two men) matched controls (20 years 1 month old, SD 13 months), performed a 1-back memory task of Object or Grip information using a hand grasping a drinking vessel as stimulus. While history of prematurity did not significantly affect task performance, Group by Task analysis of variance in regions of interest spanning the occipital, temporal and parietal lobes revealed main effects of Task and interactions between the two factors. Object processing activated the left inferior occipital cortex and bilateral ventral temporal regions, belonging to the ventral stream, with no effect of Group. Grip processing across groups activated the early visual cortex and the left supramarginal gyrus belonging to the dorsal stream. Group effect on the brain activity during Grip suggested that Controls represented the actions’ goal while Premas relied more on low-level visual information. This shift from higher- to lower-order visual processing between Controls and Premas may reflect a more general trend, in which Premas inadequately recruit higher-order visual functions for dorsal stream task performance, and rely more on lower-level functions.  相似文献   
364.
Developmental studies have demonstrated that cognitive processes such as attention, suppression of interference and memory develop throughout childhood and adolescence. However, little is currently known about the development of top-down control mechanisms and their influence on cognitive performance. In the present study, we used functional magnetic resonance imaging to investigate modulation of activity in the ventral visual cortex in healthy 7–11-year-old children and young adults. The participants performed tasks that required attention to either face (Fs task) or scene (Sf task) images while trying to ignore distracting scene or face images, respectively. A face-selective area in the fusiform gyrus (fusiform face area, FFA) and an area responding preferentially to scene images in the parahippocampal gyrus (parahippocampal place area, PPA) were defined using functional localizers. Children responded slower and less accurately in the tasks than adults. In children, the right FFA was less selective to face images and regulation of activity between the Fs and Sf tasks was weaker compared to adults. In the PPA, selectivity to scenes and regulation of activity, there according to the task demands were comparable between children and adults. During the tasks, children activated prefrontal cortical areas including the middle (MFG) and superior (SFG) frontal gyrus more than adults. Functional connectivity between the right FFA and left MFG was stronger in adults than children in the Fs task. Children, on the other hand, had stronger functional connectivity than adults in the Sf task between the right FFA and right PPA and between right MFG and medial SFG. There were no group differences in the functional connectivity between the PPA and the prefrontal cortex (PFC). Together the results suggest that, in 7–11-year-old children, the FFA is still immature, whereas the selectivity to scenes and regulation of activity in the PPA is comparable to adults. The results also indicated functional immaturity of the PFC in children compared to adults and weaker connectivity between the PFC and the rFFA, explaining the weaker regulation of activity in the rFFA between the Fs and Sf tasks.  相似文献   
365.
Three emerging strands of evidence are helping to resolve the causes of the anterograde amnesia associated with damage to the diencephalon. First, new anatomical studies have refined our understanding of the links between diencephalic and temporal brain regions associated with amnesia. These studies direct attention to the limited numbers of routes linking the two regions. Second, neuropsychological studies of patients with colloid cysts confirm the importance of at least one of these routes, the fornix, for episodic memory. By combining these anatomical and neuropsychological data strong evidence emerges for the view that damage to hippocampal—mammillary body—anterior thalamic interactions is sufficient to induce amnesia. A third development is the possibility that the retrosplenial cortex provides an integrating link in this functional system. Furthermore, recent evidence indicates that the retrosplenial cortex may suffer “covert” pathology (i.e., it is functionally lesioned) following damage to the anterior thalamic nuclei or hippocampus. This shared indirect “lesion” effect on the retrosplenial cortex not only broadens our concept of the neural basis of amnesia but may also help to explain the many similarities between temporal lobe and diencephalic amnesia.  相似文献   
366.
This address provides a review of evidence for a deconstruction of executive functions, the set of cognitive operations which allow goal-directed behaviour. The underlying working hypothesis is that some complementary and computationally diverse executive functions are dissociable not only functionally but also temporally and anatomically, along the left-right axis of prefrontal cortex and related neural networks. In particular, criterion setting—the capacity to flexibly set up and select task rules—is more left-lateralised; monitoring—the process of continuously evaluating the internal or external contingencies to optimise behaviour—is more right-lateralised; finally, superior medial prefrontal regions, including dorsal anterior cingulate cortex, play a role in energising weakly activated but relevant processes. Several lines of empirical evidence, including neuroimaging and neuropsychological findings, are presented to support this tripartite model of executive functions. Evidence which is difficult to explain with this model and some future directions are also discussed.  相似文献   
367.
Some evidence suggests that the cerebellum participates in the complex network processing emotional facial expression. To evaluate the role of the cerebellum in recognising facial expressions we delivered transcranial direct current stimulation (tDCS) over the cerebellum and prefrontal cortex. A facial emotion recognition task was administered to 21 healthy subjects before and after cerebellar tDCS; we also tested subjects with a visual attention task and a visual analogue scale (VAS) for mood. Anodal and cathodal cerebellar tDCS both significantly enhanced sensory processing in response to negative facial expressions (anodal tDCS, p=.0021; cathodal tDCS, p=.018), but left positive emotion and neutral facial expressions unchanged (p>.05). tDCS over the right prefrontal cortex left facial expressions of both negative and positive emotion unchanged. These findings suggest that the cerebellum is specifically involved in processing facial expressions of negative emotion.  相似文献   
368.
369.
370.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号