首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
  37篇
  2023年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2005年   1篇
  2001年   1篇
排序方式: 共有37条查询结果,搜索用时 0 毫秒
21.
Action integration is the process through which actions performed on a stimulus and perceptual aspects of the stimulus become bound as a unitary object. This process appears to be controlled by the dopaminergic system in the prefrontal cortex, an area that is known to decrease in volume and dopamine functioning in older adults. Although the decline should lead to reduced action integration in older adults, we found equivalent integration in both young and older adults. This indicates that older adults may be able to compensate for their dopaminergic deficiencies by activating additional neural networks that are not used by young adults.  相似文献   
22.
This study investigated glucocorticoid-dopaminergic interactions in modulating retrieval of long-term memory in an inhibitory avoidance task. Young adult male rats were trained in one trial inhibitory avoidance task (0.5 mA, 3 s footshock). On the retention test given 48 h after training, the latency to re-enter the dark compartment of the apparatus was recorded. Systemically administered corticosterone (1 or 3 mg/kg) given to rats 30 min before retention testing impaired their memory retrieval, but the lower dose was more effective than the higher one. Administration of the dopamine (DA) D2 receptor antagonist sulpiride (6 or 20 mg/kg) 30 min before corticosterone attenuated the impairing effects of corticosterone (1 mg/kg) on memory retrieval. Administration of the DA D1 receptor antagonist SCH23390 (25 or 50 microg/kg) had no effect on corticosterone-induced impairment of memory retrieval. Further, applied doses of sulpiride or SCH23390 alone were ineffective in modulating memory retrieval. These findings provide evidence for the existence of an interaction between glucocorticoids and DA D2 receptor on memory retrieval process.  相似文献   
23.
The startle response evoked by repeated presentation of a loud acoustic stimulus is regulated by the independent processes of sensitization and habituation. While schizophrenia is associated with information processing impairments, there is conflicting evidence regarding the existence of habituation deficits in schizophrenic patients. Recent clinical evidence, however, indicates that patients with schizophrenia display exaggerated startle sensitization and diminished habituation. Given the linkage between dopaminergic abnormalities and schizophrenia, the goal of the present investigation was to examine the effect of deleting D1 and D2-like dopamine receptors on sensitization and habituation of the acoustic startle reflex in mice. For these experiments, the acoustic startle reflex was assessed in dopamine D1, D2, and D3 receptor wild-type (WT) and knockout (KO) mice on a C57BL/6J background, using a methodology that can measure both sensitization and habituation. Mice lacking the D1 receptor gene displayed enhanced sensitization, along with a decrease in the amount of habituation that occurs in response to repetitive presentations of a startling stimulus. Conversely, the loss of the dopamine D2 or D3 receptor gene produced a sensitization deficit and a significant increase in habituation. The behavioral phenotype exhibited by D1 receptor KO mice is clearly distinct from that of the D2 and D3 receptor KO mice. The findings in D1 receptor KO mice are reminiscent of the abnormalities observed in schizophrenic patients tested in comparable startle paradigms, and indicate that D1 agonists may possess therapeutic efficacy against the information processing deficits associated with schizophrenia.  相似文献   
24.
A social neuroscience perspective on adolescent risk-taking   总被引:7,自引:2,他引:5  
This article proposes a framework for theory and research on risk-taking that is informed by developmental neuroscience. Two fundamental questions motivate this review. First, why does risk-taking increase between childhood and adolescence? Second, why does risk-taking decline between adolescence and adulthood? Risk-taking increases between childhood and adolescence as a result of changes around the time of puberty in the brain’s socio-emotional system leading to increased reward-seeking, especially in the presence of peers, fueled mainly by a dramatic remodeling of the brain’s dopaminergic system. Risk-taking declines between adolescence and adulthood because of changes in the brain’s cognitive control system—changes which improve individuals’ capacity for self-regulation. These changes occur across adolescence and young adulthood and are seen in structural and functional changes within the prefrontal cortex and its connections to other brain regions. The differing timetables of these changes make mid-adolescence a time of heightened vulnerability to risky and reckless behavior.  相似文献   
25.
Maddox WT  Love BC  Glass BD  Filoteo JV 《Cognition》2008,108(2):578-589
Rule-based and information-integration category learning were compared under minimal and full feedback conditions. Rule-based category structures are those for which the optimal rule is verbalizable. Information-integration category structures are those for which the optimal rule is not verbalizable. With minimal feedback subjects are told whether their response was correct or incorrect, but are not informed of the correct category assignment. With full feedback subjects are informed of the correctness of their response and are also informed of the correct category assignment. An examination of the distinct neural circuits that subserve rule-based and information-integration category learning leads to the counterintuitive prediction that full feedback should facilitate rule-based learning but should also hinder information-integration learning. This prediction was supported in the experiment reported below. The implications of these results for theories of learning are discussed.  相似文献   
26.
In auditory fear conditioning, repeated presentation of the tone in the absence of the shock leads to extinction of the acquired fear response. Both the medial prefrontal cortex (mPFC) and the basolateral amygdala (BLA) are involved in extinction. Here we examined this involvement by antagonizing D1 receptors in both regions, in the rat. We microinfused the D1 receptor antagonist, SCH23390, into the infra-limbic part of the mPFC (IL) or BLA at different time points. SCH23390 mircoinfused into the IL either before extinction acquisition or following short extinction training resulted in impairment of extinction consolidation. Microinfusion of SCH23390 into the BLA, prior to acquisition of extinction caused impairment in acquisition of extinction without affecting extinction consolidation. This is supported by the results showing that microinfusion of SCH23390 into the BLA following a short-training session did not affect consolidation. These results further strengthen the role of mPFC in consolidation of extinction while highlighting the role of the D1 receptors in this process.  相似文献   
27.
The present study investigated the impact of physical exercise on the executive shifting function in 24 participants low and 24 participants high in agentic extraversion and tested whether agentic extraversion moderated the exercise effect. Participants accomplished a shifting task and a control task that employed the same materials and response procedure as the shifting task but required less central-executive processing. Physical exercise was varied within subjects. The order of conditions was counterbalanced. After resting, the high agentic extraversion group showed higher cognitive flexibility than the low agentic extraversion group, whereas only the low agentic extraversion group improved after exercise. The results showed that agentic extraversion moderated the exercise effect on shifting performance. Implications concerning the hypothetical dopaminergic mediation were discussed.  相似文献   
28.
Individual differences in psychophysiological function have been shown to influence the balance between flexibility and distractibility during attentional set-shifting [e.g., Dreisbach et al. (2005). Dopamine and cognitive control: The influence of spontaneous eyeblink rate and dopamine gene polymorphisms on perseveration and distractibility. Behavioral Neuroscience, 119(2), 483-490]. Here we replicate both the facilitatory and detrimental influence of spontaneous eyeblink rate upon switch costs across the two distinct conditions of a set-shifting task. We extend this by presenting additional, putatively dopamine related, individual differences that also influence attentional control. Whereas trait psychoticism showed a pattern of effects opposite to that of eyeblink rate, greater working memory served to decrease switch costs across both conditions. These results highlight the need for further exploration of the role of dopaminergic neurotransmission and component processes involved in such attentional paradigms, and illustrates the importance of considering individual differences in cognitive control.  相似文献   
29.
We present a computational model of approach learning in a simulated maze environment. Our maze environment and training method mimics those used in the experimental literature. We show that our model learns the correct sequence of six decisions that lead to the location of positive reinforcement and in a manner consistent with experimental observations. Our model exhibits many properties that are characteristic of animal learning in maze environments including delay conditioning, secondary conditioning, and backward chaining. Finally, we map our model to the basal ganglia and show that a signal in our model that is responsible for learning has the same temporal properties as dopamine, the neurotransmitter believed to play an important part in learning decision sequences.  相似文献   
30.
Environmental stimuli during neonatal periods play an important role in the development of cognitive function. In this study, we examined the long-term effects of neonatal tactile stimulation (TS) on spatial working memory (SWM) and related mechanisms. We also investigated whether TS-induced effects could be counteracted by repeated short periods of maternal separation (MS). Wistar rat pups submitted to TS were handled and marked transiently per day during postnatal days 2–9 or 10–17. TS/MS pups were stimulated in the same way as TS pups and then individually separated from their mother for 1 h/day. Their nontactile stimulated (NTS) siblings served as controls. In adulthood, TS and TS/MS rats showed better performance in two versions of the delayed alternation task and superior in vivo long-term potentiation of the hippocampo–prefrontal cortical pathway when compared with controls. Furthermore, there were more doses of A77636 (a selective dopamine D1 agonist) to significantly improve SWM performance in TS and TS/MS rats than in NTS rats, suggesting that activation of prefrontal D1 receptors in TS and TS/MS rats is more optimal for SWM function than in NTS rats. MS did not counteract TS-induced effects because no significant difference was found between TS/MS and TS animals. These data indicate that in early life, external tactile stimulation leads to long-term facilitative effects in SWM-related neural function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号