首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   0篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2016年   3篇
  2015年   9篇
  2013年   38篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
51.
It is usually difficult to undercool Ti–Al alloys on account of their high reactivity in the liquid state. This results in a serious scarcity of information on their thermophysical properties in the metastable state. Here, we report on the surface tension of a liquid Ti–Al alloy under high undercooling condition. By using the electromagnetic levitation technique, a maximum undercooling of 324 K (0.19 T L) was achieved for liquid Ti-51 at.% Al alloy. The surface tension of this alloy, which was determined over a broad temperature range 1429–2040 K, increases linearly with the enhancement of undercooling. The experimental value of the surface tension at the liquidus temperature of 1753 K is 1.094 N m?1 and its temperature coefficient is ?1.422 × 10?4 N m?1 K?1. The viscosity, solute diffusion coefficient and Marangoni number of this liquid Ti–Al alloy are also derived from the measured surface tension.  相似文献   
52.
The high-entropy Ti–Zr–V–Cr–Ni (20 at% each) alloy consisting of all five hydride-forming elements was successfully synthesised by the conventional melting and casting as well as by the melt-spinning technique. The as-cast alloy consists entirely of the micron size hexagonal Laves Phase of C14 type; whereas, the melt-spun ribbon exhibits the evolution of nanocrystalline Laves phase. There was no evidence of any amorphous or any other metastable phases in the present processing condition. This is the first report of synthesising a single phase of high-entropy complex intermetallic compound in the equiatomic quinary alloy system. The detailed characterisation by X-ray diffraction, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy confirmed the existence of a single-phase multi-component hexagonal C14-type Laves phase in all the as-cast, melt-spun and annealed alloys. The lattice parameter a = 5.08 Å and c = 8.41 Å was determined from the annealed material (annealing at 1173 K). The thermodynamic calculations following the Miedema’s approach support the stability of the high-entropy multi-component Laves phase compared to that of the solid solution or glassy phases. The high hardness value (8.92 GPa at 25 g load) has been observed in nanocrystalline high-entropy alloy ribbon without any cracking. It implies that high-yield strength (~3.00 GPa) and the reasonable fracture toughness can be achieved in this high-entropy material.  相似文献   
53.
The first dynamic interactions between hydrogen and the stress-induced reverse transformation have been investigated by performing an unloading test on a Ni–Ti superelastic alloy subjected to hydrogen charging under a constant applied strain in the elastic deformation region of the martensite phase. Upon unloading the specimen, charged with a small amount of hydrogen, no change in the behaviour of the stress-induced reverse transformation is observed in the stress-strain curve, although the behaviour of the stress-induced martensite transformation changes. With increasing amount of hydrogen charging, the critical stress for the reverse transformation markedly decreases. Eventually, for a larger amount of hydrogen charging, the reverse transformation does not occur, i.e. there is no recovery of the superelastic strain. The residual martensite phase on the side surface of the unloaded specimen is confirmed by X-ray diffraction. Upon training before the unloading test, the properties of the reverse transformation slightly recover after ageing in air at room temperature. The present study indicates that to change the behaviour of the reverse transformation a larger amount of hydrogen than that for the martensite transformation is necessary. In addition, it is likely that a substantial amount of hydrogen in solid solution more strongly suppresses the reverse transformation than hydrogen trapped at defects, thereby stabilising the martensite phase.  相似文献   
54.
While the Mg–Y–Nd system is used for industrial applications, the details of the precipitation sequence and exact role of each alloying element during ageing have not been fully quantified. Focusing on WE43, a Mg–Y–Nd alloy containing Zr, the chemistry of β′ precipitates and matrix during isothermal ageing at 250 °C is investigated using atom probe tomography. Precipitate morphologies and compositions are compared with previous electron microscopy observations, and the roles of the alloying elements are discussed.  相似文献   
55.
A novel long-period stacking-ordered (LPSO) structure of a martensitic phase in a Zr–Co–Pd alloy was discovered and characterized by means of conventional transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy. The new phase had a 6O structure and its lattice parameters were estimated to be a = 0.34, b = 0.45 and c = 1.53 nm. The formation mechanism and the space group of the LPSO structure are described.  相似文献   
56.
The present work explores the possibilities of the application of Scheil–Gulliver equation in modelling the solidification of a real alloy. For this study, Cu-9 wt%Ni-6 wt%Sn alloy was chosen which exhibits profuse micro-segregation during solidification, and hence easy to quantify experimentally. Also, this alloy is spinodally strengthened high strength copper alloy and has industrial importance. In this study, thermodynamic assessment using Scheil–Gulliver solidification model was carried out. Subsequently, the assessed result was compared with the experimentally obtained results from energy-dispersive X-ray spectroscopy analysis, and a good agreement was observed between these results. Therefore, it could be concluded that the solidification of this particular alloy system can be modelled using Scheil–Gulliver equation.  相似文献   
57.
The growth of austenite from a mixture of ferrite and cementite in low-alloy steels can be classified into three temperature ranges above the eutectoid temperature. In the first range, the austenite growth and cementite dissolution are controlled by alloy element diffusion from the beginning. In the second, they are controlled by carbon diffusion and switch to alloy element diffusion control at a later stage. In the third, the cementite dissolution, if the ferrite matrix has transformed to austenite upon heating, is controlled by carbon diffusion until completion. The transition temperatures between these ranges are evaluated in a quaternary alloy containing Mn and Cr by Thermo-calc and DICTRA simulation, and are in essential agreement with earlier experimental results. The proposed simple approach of calculating the transition temperatures may facilitate our understanding of austenitization kinetics and the design of heat treatment, for example, homogenization and soaking, of high-carbon steels.  相似文献   
58.
Al86Ni6Y4.5Co2La1.5 amorphous powders synthesized after 200 h of mechanical alloying were spark plasma sintered at 25 and 400 MPa at 400 °C for 15 min. The sample sintered at 25 MPa showed precipitation of FCC-Al grains of sub-micron size attributed to a higher amount of localized high-temperature regions which favoured faster long-range atomic diffusion. On the contrary, the 400-MPa sintered sample showed the presence of nanocrystals (5–20 nm) distributed in an amorphous matrix. This is attributed to higher pressure sintering favouring local and short-range atomic redistributions. The higher amount of retained amorphous phase in the 400-MPa sintered sample could be accounted for by a smaller amount of localized high-temperature regions in comparison to those in 25-MPa sintered sample. High-pressure sintering induces shear fracturing and fragmentation of the brittle amorphous particles and provided better surface contact and packing density. The retention of a larger amount of amorphous phase and a higher relative density (96%) contributes to high microhardness (278 Hv) and nanoindentation hardness (3.7 GPa) of the 400-MPa sintered sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号