首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   558篇
  免费   48篇
  国内免费   39篇
  2023年   2篇
  2022年   5篇
  2021年   19篇
  2020年   34篇
  2019年   28篇
  2018年   18篇
  2017年   38篇
  2016年   24篇
  2015年   19篇
  2014年   33篇
  2013年   78篇
  2012年   22篇
  2011年   33篇
  2010年   17篇
  2009年   39篇
  2008年   39篇
  2007年   33篇
  2006年   25篇
  2005年   15篇
  2004年   22篇
  2003年   21篇
  2002年   16篇
  2001年   8篇
  2000年   10篇
  1999年   8篇
  1998年   6篇
  1997年   5篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有645条查询结果,搜索用时 31 毫秒
31.
The ability to learn the direction of causal relations is critical for understanding and acting in the world. We investigated how children learn causal directionality in situations in which the states of variables are temporally dependent (i.e., autocorrelated). In Experiment 1, children learned about causal direction by comparing the states of one variable before versus after an intervention on another variable. In Experiment 2, children reliably inferred causal directionality merely from observing how two variables change over time; they interpreted Y changing without a change in X as evidence that Y does not influence X. Both of these strategies make sense if one believes the variables to be temporally dependent. We discuss the implications of these results for interpreting previous findings. More broadly, given that many real‐world environments are characterized by temporal dependency, these results suggest strategies that children may use to learn the causal structure of their environments.  相似文献   
32.
It is argued that causal understanding originates in experiences of acting on objects. Such experiences have consistent features that can be used as clues to causal identification and judgment. These are singular clues, meaning that they can be detected in single instances. A catalog of 14 singular clues is proposed. The clues function as heuristics for generating causal judgments under uncertainty and are a pervasive source of bias in causal judgment. More sophisticated clues such as mechanism clues and repeated interventions are derived from the 14. Research on the use of empirical information and conditional probabilities to identify causes has used scenarios in which several of the clues are present, and the use of empirical association information for causal judgment depends on the presence of singular clues. It is the singular clues and their origin that are basic to causal understanding, not multiple instance clues such as empirical association, contingency, and conditional probabilities.  相似文献   
33.
34.
Christian Kietzmann 《Ratio》2018,31(3):294-302
It has recently been argued that inference essentially involves the thinker taking his premises to support his conclusion and drawing his conclusion because of this fact. However, this Taking Condition has also been criticized: If taking is interpreted as believing, it seems to lead to a vicious regress and to overintellectualize the act of inferring. In this paper, I examine and reject various attempts to salvage the Taking Condition, either by interpreting inferring as a kind of rule‐following, or by finding an innocuous role for the taking‐belief. Finally, I propose an alternative account of taking, according to which it is not a separate belief, but rather an aspect of the attitude of believing: Believing that p implies not only taking p to be true and taking oneself to believe that p, but also taking one's reasons q to support p, when the belief in question is held on account of an inference.  相似文献   
35.
Knowledge of mechanisms is critical for causal reasoning. We contrasted two possible organizations of causal knowledge—an interconnected causal network, where events are causally connected without any boundaries delineating discrete mechanisms; or a set of disparate mechanisms—causal islands—such that events in different mechanisms are not thought to be related even when they belong to the same causal chain. To distinguish these possibilities, we tested whether people make transitive judgments about causal chains by inferring, given A causes B and B causes C, that A causes C. Specifically, causal chains schematized as one chunk or mechanism in semantic memory (e.g., exercising, becoming thirsty, drinking water) led to transitive causal judgments. On the other hand, chains schematized as multiple chunks (e.g., having sex, becoming pregnant, becoming nauseous) led to intransitive judgments despite strong intermediate links ((Experiments 1–3). Normative accounts of causal intransitivity could not explain these intransitive judgments (Experiments 4 and 5).  相似文献   
36.
A Duet for one     
This paper considers communication in terms of inference about the behaviour of others (and our own behaviour). It is based on the premise that our sensations are largely generated by other agents like ourselves. This means, we are trying to infer how our sensations are caused by others, while they are trying to infer our behaviour: for example, in the dialogue between two speakers. We suggest that the infinite regress induced by modelling another agent – who is modelling you – can be finessed if you both possess the same model. In other words, the sensations caused by others and oneself are generated by the same process. This leads to a view of communication based upon a narrative that is shared by agents who are exchanging sensory signals. Crucially, this narrative transcends agency – and simply involves intermittently attending to and attenuating sensory input. Attending to sensations enables the shared narrative to predict the sensations generated by another (i.e. to listen), while attenuating sensory input enables one to articulate the narrative (i.e. to speak). This produces a reciprocal exchange of sensory signals that, formally, induces a generalised synchrony between internal (neuronal) brain states generating predictions in both agents. We develop the arguments behind this perspective, using an active (Bayesian) inference framework and offer some simulations (of birdsong) as proof of principle.  相似文献   
37.
38.
When we try to identify causal relationships, how strong do we expect that relationship to be? Bayesian models of causal induction rely on assumptions regarding people’s a priori beliefs about causal systems, with recent research focusing on people’s expectations about the strength of causes. These expectations are expressed in terms of prior probability distributions. While proposals about the form of such prior distributions have been made previously, many different distributions are possible, making it difficult to test such proposals exhaustively. In Experiment 1 we used iterated learning—a method in which participants make inferences about data generated based on their own responses in previous trials—to estimate participants’ prior beliefs about the strengths of causes. This method produced estimated prior distributions that were quite different from those previously proposed in the literature. Experiment 2 collected a large set of human judgments on the strength of causal relationships to be used as a benchmark for evaluating different models, using stimuli that cover a wider and more systematic set of contingencies than previous research. Using these judgments, we evaluated the predictions of various Bayesian models. The Bayesian model with priors estimated via iterated learning compared favorably against the others. Experiment 3 estimated participants’ prior beliefs concerning different causal systems, revealing key similarities in their expectations across diverse scenarios.  相似文献   
39.
To date, neither primates nor birds have shown clear evidence of causal knowledge when attempting to solve the trap tube task. One factor that may have contributed to mask the knowledge that subjects may have about the task is that subjects were only allowed to push the reward away from them, which is a particularly difficult action for primates in certain problem solving situations. We presented five orangutans (Pongo pygmaeus), two chimpanzees (Pan troglodytes), two bonobos (Pan paniscus), and one gorilla (Gorilla gorilla) with a modified trap tube that allowed subjects to push or rake the reward with the tool. In two additional follow-up tests, we inverted the tube 180° rendering the trap nonfunctional and also presented subjects with the original task in which they were required to push the reward out of the tube. Results showed that all but one of the subjects preferred to rake the reward. Two orangutans and one chimpanzee (all of whom preferred to rake the reward), consistently avoided the trap only when it was functional but failed the original task. These findings suggest that some great apes may have some causal knowledge about the trap-tube task. Their success, however, depended on whether they were allowed to choose certain tool-using actions. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
40.
Functional explanation and the function of explanation   总被引:1,自引:0,他引:1  
Lombrozo T  Carey S 《Cognition》2006,99(2):167-204
Teleological explanations (TEs) account for the existence or properties of an entity in terms of a function: we have hearts because they pump blood, and telephones for communication. While many teleological explanations seem appropriate, others are clearly not warranted--for example, that rain exists for plants to grow. Five experiments explore the theoretical commitments that underlie teleological explanations. With the analysis of [Wright, L. (1976). Teleological Explanations. Berkeley, CA: University of California Press] from philosophy as a point of departure, we examine in Experiment 1 whether teleological explanations are interpreted causally, and confirm that TEs are only accepted when the function invoked in the explanation played a causal role in bringing about what is being explained. However, we also find that playing a causal role is not sufficient for all participants to accept TEs. Experiment 2 shows that this is not because participants fail to appreciate the causal structure of the scenarios used as stimuli. In Experiments 3-5 we show that the additional requirement for TE acceptance is that the process by which the function played a causal role must be general in the sense of conforming to a predictable pattern. These findings motivate a proposal, Explanation for Export, which suggests that a psychological function of explanation is to highlight information likely to subserve future prediction and intervention. We relate our proposal to normative accounts of explanation from philosophy of science, as well as to claims from psychology and artificial intelligence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号