首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   3篇
  国内免费   12篇
  280篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   11篇
  2020年   10篇
  2019年   9篇
  2018年   13篇
  2017年   11篇
  2016年   7篇
  2015年   4篇
  2014年   17篇
  2013年   32篇
  2012年   10篇
  2011年   21篇
  2010年   16篇
  2009年   20篇
  2008年   17篇
  2007年   14篇
  2006年   15篇
  2005年   8篇
  2004年   7篇
  2003年   10篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
排序方式: 共有280条查询结果,搜索用时 8 毫秒
11.
Many differences in brain activity have been reported between persons who stutter (PWS) and typically fluent controls during oral reading tasks. An earlier meta-analysis of imaging studies identified stutter-related regions, but recent studies report less agreement with those regions. A PET study on adult dextral PWS (= 18) and matched fluent controls (CONT, = 12) is reported that used both oral reading and monologue tasks. After correcting for speech rate differences between the groups the task-activation differences were surprisingly small. For both analyses only some regions previously considered stutter-related were more activated in the PWS group than in the CONT group, and these were also activated during eyes-closed rest (ECR). In the PWS group, stuttering frequency was correlated with cortico-striatal-thalamic circuit activity in both speaking tasks. The neuroimaging findings for the PWS group, relative to the CONT group, appear consistent with neuroanatomic abnormalities being increasingly reported among PWS.  相似文献   
12.
Keeping aware of the locations of objects while one is moving requires the updating of spatial representations. As long as the objects are visible, attentional tracking is sufficient, but knowing where objects out of view went in relation to one's own body involves an updating of spatial working memory. Here, multiple object tracking was employed to study spatial updating and its neural correlates. In a dynamic 3D-scene, targets moved among visually indistinguishable distractors. The targets and distractors either stayed visible during continuous viewpoint changes or they turned invisible. The parametric variation of tracking load revealed load-dependent activations of the intraparietal sulcus, the superior parietal lobule, and the lateral occipital cortex in response to the attentive tracking task. Viewpoint changes with invisible objects that demanded retention and updating produced load-dependent activation only in the precuneus in line with its presumed involvement in updating spatial working memory.  相似文献   
13.
Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes, cognitive abilities (Wechsler Intelligence Scale for Children-Revised, WISC-R), and serum inflammatory mediators were collected in 20 Mexico City (MC) children (10 with white matter hyperintensities, WMH+, and 10 without, WMH) and 10 matched controls (CTL) from a low polluted city. There were significant differences in white matter volumes between CTL and MC children - both WMH+ and WMH - in right parietal and bilateral temporal areas. Both WMH and WMH+ MC children showed progressive deficits, compared to CTL children, on the WISC-R Vocabulary and Digit Span subtests. The cognitive deficits in highly exposed children match the localization of the volumetric differences detected over the 1 year follow-up, since the deficits observed are consistent with impairment of parietal and temporal lobe functions. Regardless of the presence of prefrontal WMH, Mexico City children performed more poorly across a variety of cognitive tests, compared to CTL children, thus WMH+ is likely only partially identifying underlying white matter pathology. Together these findings reveal that exposure to air pollution may perturb the trajectory of cerebral development and result in cognitive deficits during childhood.  相似文献   
14.
This methodological article proposes a framework for analysing the relationship between cognitive processes and brain activity using variables measured by neurofeedback (NF) carried out by functional Magnetic Resonance Imagery (fMRI NF). Cognitive processes and brain activity variables can be analysed as either the dependant variable or the independent variable. Firstly, we propose two traditional approaches, defined in the article as the “neuropsychological” approach (NP) and the “psychophysiology” approach (PP), to extract dependent and independent variables in NF protocols. Secondly, we suggest that NF can be inspired by the style of inquiry used in neurophenomenology. fMRI NF allows participants to experiment with his or her own cognitive processes and their effects on brain region of interest (ROI) activations simultaneously. Thus, we suggest that fMRI NF could be improved by implementing “the elicitation interview method”, which allows the investigator to gather relevant verbatim from participants’ introspection on subjective experiences.  相似文献   
15.
The adult human brain quickly adapts to regular temporal sequences, and emits a sequence of novelty responses when these regularities are violated. These novelty responses have been interpreted as error signals that reflect the difference between the incoming signal and predictions generated at multiple cortical levels. Do infants already possess such a hierarchy of violation-detection mechanisms? Using high-density recordings of event-related potentials during an auditory local–global violation paradigm, we show that three-month-old infants process novelty in temporal sequences at two distinct levels. Violations of local expectancies, such as perceiving a deviant vowel “a” after repeated presentation of another vowel i-i-i, elicited an early auditory mismatch response. Conversely, violations of global expectancies, such as hearing the rare sequence a-a-a-a instead of the frequent sequence a-a-a-i, modulated this early mismatch response and led to a late frontal negative slow wave, whose cortical sources included the left inferior frontal region. These results suggest that the infant brain already possesses two dissociable systems for temporal sequence learning.  相似文献   
16.
Human memory is an enigmatic component of cognition which many researchers have attempted to comprehend. Accumulating studies on functional connectivity see brain as a complex dynamic unit with positively and negatively correlated networks in perfect coherence during a task. We aimed to examine coherence of network connectivity during visual memory encoding and retrieval in the context of education. School Educated (SE) and College Educated (CE) healthy volunteers (n = 60) were recruited and assessed for visual encoding and retrieval. Functional connectivity using seed to voxel based connectivity analysis of the posterior cingulate cortex (PCC) was evaluated. We noticed that there were reciprocal dynamic changes in both dorsolateral prefrontal cortex (DLPFC) region and PCC regions during working memory encoding and retrieval. In agreement with the previous studies, there were more positively correlated regions during retrieval compared to encoding. The default mode network (DMN) networks showed greater negative correlations during more attentive task of visual encoding. In tune with the recent studies on cognitive reserve we also found that number of years of education was a significant factor influencing working memory connectivity. SE had higher positive correlation to DLPFC region and lower negative correlation to DMN in comparison with CE during encoding and retrieval.  相似文献   
17.
David Buller and Valerie Hardcastle have argued that various discoveries about the genetics and nature of brain development show that most “central” psychological mechanisms cannot be adaptations because the nature of the contribution from the environment on which they are based shows they are not heritable. Some philosophers and scientists have argued that a strong role for the environment is compatible with high heritability as long as the environment is highly stable down lineages. In this paper I support this view by arguing that the discoveries Buller and Hardcastle refer to either do not show as strong a role for the environment as they suggest, or these discoveries show that the brain's developmental process depends in many cases on input from the environment that is highly stable across generations.  相似文献   
18.
19.
20.
Is the Brain a Quantum Computer?   总被引:1,自引:0,他引:1  
We argue that computation via quantum mechanical processes is irrelevant to explaining how brains produce thought, contrary to the ongoing speculations of many theorists. First, quantum effects do not have the temporal properties required for neural information processing. Second, there are substantial physical obstacles to any organic instantiation of quantum computation. Third, there is no psychological evidence that such mental phenomena as consciousness and mathematical thinking require explanation via quantum theory. We conclude that understanding brain function is unlikely to require quantum computation or similar mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号