首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   1篇
  国内免费   2篇
  2023年   1篇
  2022年   38篇
  2021年   44篇
  2020年   31篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   10篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1980年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
41.
For transitions of control in automated vehicles, driver monitoring systems (DMS) may need to discern task difficulty and driver preparedness. Such DMS require models that relate driving scene components, driver effort, and eye measurements. Across two sessions, 15 participants enacted receiving control within 60 randomly ordered dashcam videos (3-second duration) with variations in visible scene components: road curve angle, road surface area, road users, symbols, infrastructure, and vegetation/trees while their eyes were measured for pupil diameter, fixation duration, and saccade amplitude. The subjective measure of effort and the objective measure of saccade amplitude evidenced the highest correlations (r = 0.34 and r = 0.42, respectively) with the scene component of road curve angle. In person-specific regression analyses combining all visual scene components as predictors, average predictive correlations ranged between 0.49 and 0.58 for subjective effort and between 0.36 and 0.49 for saccade amplitude, depending on cross-validation techniques of generalization and repetition. In conclusion, the present regression equations establish quantifiable relations between visible driving scene components with both subjective effort and objective eye movement measures. In future DMS, such knowledge can help inform road-facing and driver-facing cameras to jointly establish the readiness of would-be drivers ahead of receiving control.  相似文献   
42.
In a ride pooling system, riders may have varied behaviors in seeking pooled or non-pooled rides. It is important to understand the effect of these rider behaviors on the system performance in order to formulate policies to guide ride pooling implementation. Existing literature modeling ride pooling systems using agent-based models only considers the extreme cases in which riders either all participate or not participate in pooling. However, the pooling behaviors could be more complex. This study segments the rides in the system into five types (non-pooling only, non-pooling preferred, indifferent, pooling preferred, and pooling only). We use an agent-based model to simulate these preferences in a system of pooled autonomous vehicles. We use mixture experiments to vary the proportion of riders within these five types and build models to study the interactions among the rider types in terms of the system’s service quality and environmental performance. The results show that higher service level is achieved when all riders in the system are open to pooling, with 30% of pooling only riders and 70% of pooling preferred or indifferent riders providing the maximum value. The results can help formulate incentives and policies to promote ride pooling participation to improve ride pooling system performance.  相似文献   
43.
Connected and Autonomous Vehicles (CAVs) constitute an automotive development carrying paradigm-shifting potential that may soon be embedded into a dynamically changing urban mobility landscape. The complex machine-led dynamics of CAVs make them more prone to data exploitation and vulnerable to cyber attacks than any of their predecessors increasing the risks of privacy breaches and cyber security violations for their users. This can adversely affect the public acceptability of CAVs, give them a bad reputation at this embryonic stage of their development, create barriers to their adoption and increased use, and complicate the business models of their future operations. Therefore, it is vital to identify and create an in-depth understanding of the cyber security and privacy issues associated with CAVs, and of the way these can be prioritised and addressed. This work employs 36 semi-structured elite interviews to explore the diverse dimensions of user acceptance through the lens of the well-informed CAV experts that already anticipate problems and look for their solutions. Our international interviewee sample represents academia, industry and policy-making so that all the key stakeholder voices are heard. Thematic analysis was used to identify and contextualise the factors that reflect and affect CAV acceptance in relation to the privacy and cyber security agendas. Six core themes emerged: awareness, user and vendor education, safety, responsibility, legislation, and trust. Each of these themes has diverse and distinctive dimensions and are discussed as sub-themes. We recommend that mitigating the cyber security and privacy risks embedded in CAVs require inter-institutional cooperation, awareness campaigns and trials for trust-building purposes, mandatory educational training for manufacturers and perhaps more importantly for end-users, balanced and fair responsibility-sharing, two-way dynamic communication channels and a clear consensus on what constitutes threats and solutions.  相似文献   
44.
This paper presents the architecture and functionality of a logic prover designed for question answering. The approach transforms questions and answer passages into logic representations based on syntactic, semantic and contextual information. World knowledge supplements the linguistic, ontological, and temporal axioms supplied to the prover which renders a deep understanding of the relationship between the question and answer text. The trace of the proofs provides a basis for generating human comprehensible answer justifications. The results show that the prover boosts the performance of the Question Answering system on TREC 2004 questions by 12%.  相似文献   
45.
Advanced driver assistance systems (ADAS) are taking over an increasing part of the driving task and are supporting the introduction of semi- and fully automated vehicles. As a consequence, a mixed traffic situation is developing where vehicles equipped with automated systems taking over the lateral and longitudinal control of the vehicle will interact with unequipped vehicles (UV) that are not fitted with such automated systems. Different forms of automation are emerging and it appears that regardless of which form is going to become popular on our roads, there is a consensus developing that it will be accompanied by a reduction in time headway (THW). The present simulator study examined whether a ‘contagion’ effect from the short THW held in platoons on the UV drivers would occur. Thirty participants were asked to follow a lead vehicle (LV) on a simulated motorway in three different traffic conditions: surrounding traffic including (1) platoons with short following distance (THW = 0.3 s), (2) large following distance (THW = 1.4 s) or (3) no platoons at all. Participants adapted their driving behaviour by displaying a significant shorter average and minimum THW while driving next to a platoon holding short THWs as when THW was large. They also spent more time keeping a THW below a safety threshold of 1 s. There was no carryover effect from one platoon condition to the other, which can be interpreted as an effect that is not lasting in time. The results of this study point out the importance of examining possibly negative behavioural effects of mixed traffic on UV drivers.  相似文献   
46.
Different motor vehicle manufacturers have recently introduced assistance systems that are capable of both longitudinal and lateral vehicle control, while the driver still has to be able to take over the vehicle control at all times (so-called Partial Automation). While these systems usually allow hands-free driving only for short time periods (e.g., 10 s), there has been little research whether allowing longer time periods of hands-off driving actually has a negative impact on driving safety in situations that the automation cannot handle alone. Altogether, two partially automated assistance systems, differing in the permitted hands-off intervals (Hands-off system vs. Hands-on system, n = 20 participants per assistance condition, age 25–70 years) were implemented in the driving simulation with a realistic take-over concept. The Hands-off system is defined by having a permitted hands-off interval of 120 s, while the Hands-on system is defined by a permitted hands-off interval of 10 s. Drivers’ reactions at a functional system limit were tested under conditions of high ecological validity: while driving in a traffic jam, participants unexpectedly encountered a time-critical situation, consisting of a vehicle at standstill that appeared suddenly and required immediate action. A visual-auditory take-over request was issued to the drivers. Regardless of the hands-off interval, all participants brought the vehicle to a safe stop. In spite of a stronger brake reaction with the Hands-on system, no significant differences between assistance levels were found in brake reaction times and the criticality of the situation. The reason for this may be that most of the drivers kept contact with the steering wheel, even in the Hands-off condition. Neither age nor prior experience with ACC was found to impact the results. The study thus demonstrates that permitting longer periods of hands-off driving does not necessarily lead to performance deficits of the driver in the case of take-over situations, if a comprehensive take-over concept is implemented.  相似文献   
47.
The growing proportion of older drivers in the population plays an increasingly relevant role in road traffic that is currently awaiting the introduction of automated vehicles. In this study, it was investigated how older drivers (⩾60 years) compared to younger drivers (⩽28 years) perform in a critical traffic event when driving highly automated. Conditions of the take-over situation were manipulated by adding a verbal non-driving task (20 questions task) and by variation of traffic density. Two age groups consisting of 36 younger and 36 older drivers drove either with or without a non-driving task on a six-lane highway. They encountered three situations with either no, medium or high traffic density where they had to regain vehicle control and evade an obstacle on the road. Older drivers reacted as fast as younger drivers, however, they differed in their modus operandi as they braked more often and more strongly and maintained a higher time-to-collision (TTC). Deterioration of take-over time and quality caused by increased traffic density and engagement in a non-driving task was on the same level for both age groups. Independent of the traffic density, there was a learning effect for both younger and older drivers in a way that the take-over time decreased, minimum TTC increased and maximum lateral acceleration decreased between the first and the last situation of the experiment. Results highlight that older drivers are able to solve critical traffic events as well as younger drivers, yet their modus operandi differs. Nevertheless, both age groups adapt to the experience of take-over situations in the same way.  相似文献   
48.
Recent and upcoming advances in vehicle automation are likely to change the role of the driver from one of actively controlling a vehicle to one of monitoring the behaviour of an assistant system and the traffic environment. A growing body of literature suggests that one possible side effect of an increase in the degree of vehicle automation is the tendency of drivers to become more heavily involved in secondary tasks while the vehicle is in motion. However, these studies have mainly been conducted in strictly controlled research environments, such as driving simulators and test tracks, and have mainly involved either low levels of automation (i.e., automation of longitudinal control by Adaptive Cruise Control (ACC)) or Highly automated driving (i.e., automation of both longitudinal and lateral control without the need for continuous monitoring). This study aims to replicate these effects during an on-road experiment in everyday traffic and to extend previous findings to an intermediate level of automation, in which both longitudinal and lateral control are automated but the driver must still monitor the traffic environment continuously (so-called Partial automation). N = 32 participants of different age groups and different levels of familiarity with ACC drove in rush-hour traffic on a highway segment. They were assisted by ACC, ACC with steering assistance (ACC+SA), or not at all. The results show that while subjective and objective driving safety were not influenced by the degree of automation, drivers who were already familiar with ACC increased the frequency of interactions with an in-vehicle secondary task in both assisted drives. However, participants generally rated performing the secondary task as less effortful when being assisted, regardless of the automation level (ACC vs. ACC+SA). The results of this on-road experiment thus validate previous findings from more-controlled research environments and extend them to Partially automated driving.  相似文献   
49.
Automated Vehicles (AVs) are being developed rapidly and tested on public roads, but pedestrians’ interaction with AV is not comprehensively understood or thoroughly investigated to ensure safe operations and the public’s trust of AVs. In this study, we aimed to provide another research evidence to enhance such understanding with the use of external interfaces for facilitating the interaction between pedestrians and AVs. We developed five external interfaces, including text, symbol, animated-eye, a combination of text and symbol, and speed. These interfaces communicated five types of information, including (1) intent of AV; 2) advice to pedestrians of what to do, (3) AV’s awareness of pedestrians, (4) combination of intent and advice, and (5) vehicle movement (i.e., speed). We tested the interfaces through two field studies at uncontrolled intersections with crosswalks. The Wizard of Oz method was used, in which an experimenter worked as a driver in an instrumented vehicle and wore an outfit to be invisible to the pedestrians, thus rendering the set-up to simulate an AV interacting with a pedestrian. The interfaces were displayed on an LED panel mounted on the AV. Results showed that the AV’s external interface did not change pedestrians’ response time in comparison with the baseline without any interface. There was no statistically significant difference in response time among the external interfaces either. According to the post-experimental interview, vehicle movement pattern (e.g., vehicle speed) continued to be a significant cue for pedestrians to decide when to cross the intersections. Participants perceived the communication of the AV’s intent and vehicle speed as more beneficial than the communication of AV’s awareness. The subjective ratings showed positive effects of those interfaces that were easy to understand (e.g., text interface and speed interface), which also helped pedestrians feel safer when interacting with the AV.  相似文献   
50.
The present study was designed to examine the influence of explanation-based knowledge regarding system functions and the driver’s role in conditionally automated driving (Level 3, as defined in SAE J3016). In particular, we studied how safely and successfully drivers assume control of the vehicle when encountering situations that exceed the automation parameters. This examination was conducted through a test-track experiment. Thirty-two younger drivers (mean age = 37.3 years) and 24 older drivers (mean age = 71.1 years) participated in Experiments 1 and 2, respectively. Adopting a between-participants design, in each experiment the participants were divided into two age- and sex-matched groups that were given differing levels of explanation-based knowledge concerning the system limitations of automated driving. The only information given to the less-informed groups was that, during automated driving, drivers may be required to occasionally assume control of the vehicle. The well-informed groups were given the same information, as well as details regarding the auditory-visual alerts produced by the human–machine interface (HMI) during requests to intervene (RtIs), and examples of situations where RtIs would be issued. Ten and nine RtI events were staged for each participant in Experiment 1 and 2, respectively; the participants performed a non-driving-related task while the automated driving system was functioning. For both experiments it was found that, for all RtI events, more participants in the well-informed groups than the less-informed groups successfully assumed control of the vehicle. These results suggest that, in addition to providing information regarding the possible occurrence of RtIs, explanations of HMI and RtI-related situations are effective for helping both younger and older drivers safely and successfully negotiate such events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号