首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   0篇
  132篇
  2022年   28篇
  2021年   29篇
  2020年   18篇
  2018年   4篇
  2017年   1篇
  2016年   6篇
  2015年   2篇
  2014年   3篇
  2013年   11篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2007年   4篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1992年   1篇
排序方式: 共有132条查询结果,搜索用时 0 毫秒
31.
During automated driving (SAE Level 3), drivers can delegate control of the vehicle and monitoring of the road to an automated system. They may then devote themselves to tasks other than driving and gradually lose situational awareness (SA). This could result in difficulty in regaining control of the vehicle when the automated system requires it. In this simulator study, the level of SA was manipulated through the time spent performing a non-driving task (NDRT), which alternated with phases where the driver could monitor the driving scene, prior to a critical takeover request (TOR). The SA at the time of TOR, the visual behaviour after TOR, and the takeover quality were analysed. The results showed that monitoring the road just before the TOR allowed the development of limited perception of the driving situation, which only partially compensated for the lack of a consolidated mental model of the situation. The quality of the recovery, assessed through the number of collisions, was consistent with the level of development of SA. The analysis of visual behaviour showed that engagement in the non-driving task at the time of TOR induced a form of perseverance in consulting the interface where the task was displayed, to the detriment of checking the mirrors. These results underline the importance of helping the driver to restore good SA well in advance of a TOR.  相似文献   
32.
    
In the transition towards higher levels of vehicle automation, one of the key concerns with regards to human factors is to avoid mode confusion, when drivers misinterpret the driving mode and therewith misjudge their own tasks and responsibility. To enhance mode awareness, a clear human centered Human Machine Interface (HMI) is essential. The HMI should support the driver tasks of both supervising the driving environment when needed and self-regulating their non-driving related activities (NDRAs). Such support may be provided by either presenting continuous information on automation reliability, from which the driver needs to infer what task is required, or by presenting continuous information on the currently required driving task and allowed NDRA directly. Additionally, it can be valuable to provide continuous information to support anticipation of upcoming changes in the automation mode and its associated reliability or required and allowed driver task(s). Information that could support anticipation includes the available time until a change in mode (i.e. time budget), information on the upcoming mode, and reasons for changing to the upcoming mode. The current work investigates the effects of communicating this potentially valuable information through HMI design. Participants received information from an HMI during simulated drives in a simulated car presented online (using Microsoft Teams) with an experimenter virtually accompanying and guiding each session. The HMI either communicated on automation reliability or on the driver task, and either included information supporting anticipation or did not include such information. Participants were thinking aloud during the simulated drives and reported on their experience and preferences afterwards. Anticipatory information supported understanding about upcoming changes without causing information overload or overreliance. Moreover, anticipatory information and information on automation reliability, and especially a combination of the two, best supported understandability and usability. Recommendations are provided for future work on facilitating supervision and NDRA self-regulation during automated driving through HMI design.  相似文献   
33.
    
Perceived risk and trust are crucial for user acceptance of driving automation. In this study, we identify important predictors of perceived risk and trust in a driving simulator experiment and develop models through stepwise regression to predict event-based changes in perceived risk and trust. 25 participants were tasked to monitor SAE Level 2 driving automation (ACC + LC) while experiencing merging and hard braking events with varying criticality on a motorway. Perceived risk and trust were rated verbally after each event, and continuous perceived risk, pupil diameter and ECG signals were explored as possible indictors for perceived risk and trust.The regression models show that relative motion with neighbouring road users accounts for most perceived risk and trust variations, and no difference was found between hard braking with merging and hard braking without merging. Drivers trust the automation more in the second exposure to events. Our models show modest effects of personal characteristics: experienced drivers are less sensitive to risk and trust the automation more, while female participants perceive more risk than males. Perceived risk and trust highly correlate and have similar determinants. Continuous perceived risk accurately reflects participants’ verbal post-event rating of perceived risk; the use of brakes is an effective indicator of high perceived risk and low trust, and pupil diameter correlates to perceived risk in the most critical events. The events increased heart rate, but we found no correlation with event criticality. The prediction models and the findings on physiological measures shed light on the event-based dynamics of perceived risk and trust and can guide human-centred automation design to reduce perceived risk and enhance trust.  相似文献   
34.
Research indicates that cognitive age differences can be influenced by metacognitive factors. This research has generally focused on simple memory tasks. Age differences in working memory (WM) performance are pronounced, but are typically attributed to basic cognitive deficits rather than metacognitive factors. However, WM performance can be influenced by strategic behaviour that might be driven by metacognitive monitoring. In the current project, we attempted to connect these lines of research by examining age differences in metacognitive WM monitoring and strategies. In Experiment 1, younger and older adult participants completed a computerized operation span task in conditions that either required or did not require monitoring reports. Participants in the monitoring condition predicted and postdicted global performance for each block and rated their responses following each trial within a block. In Experiment 2, participants also reported their trial-level strategic approach. In contrast to the age equivalence typically found for simple memory monitoring, results demonstrated age differences in WM monitoring accuracy. Overall age differences in strategy use were not found, but using effective strategies benefited older adults' performance more than younger adults'. Furthermore, age-related differences in the WM task appear to be mediated by the accuracy of performance monitoring.  相似文献   
35.
Recent and upcoming advances in vehicle automation are likely to change the role of the driver from one of actively controlling a vehicle to one of monitoring the behaviour of an assistant system and the traffic environment. A growing body of literature suggests that one possible side effect of an increase in the degree of vehicle automation is the tendency of drivers to become more heavily involved in secondary tasks while the vehicle is in motion. However, these studies have mainly been conducted in strictly controlled research environments, such as driving simulators and test tracks, and have mainly involved either low levels of automation (i.e., automation of longitudinal control by Adaptive Cruise Control (ACC)) or Highly automated driving (i.e., automation of both longitudinal and lateral control without the need for continuous monitoring). This study aims to replicate these effects during an on-road experiment in everyday traffic and to extend previous findings to an intermediate level of automation, in which both longitudinal and lateral control are automated but the driver must still monitor the traffic environment continuously (so-called Partial automation). N = 32 participants of different age groups and different levels of familiarity with ACC drove in rush-hour traffic on a highway segment. They were assisted by ACC, ACC with steering assistance (ACC+SA), or not at all. The results show that while subjective and objective driving safety were not influenced by the degree of automation, drivers who were already familiar with ACC increased the frequency of interactions with an in-vehicle secondary task in both assisted drives. However, participants generally rated performing the secondary task as less effortful when being assisted, regardless of the automation level (ACC vs. ACC+SA). The results of this on-road experiment thus validate previous findings from more-controlled research environments and extend them to Partially automated driving.  相似文献   
36.
    
The growing proportion of older drivers in the population plays an increasingly relevant role in road traffic that is currently awaiting the introduction of automated vehicles. In this study, it was investigated how older drivers (⩾60 years) compared to younger drivers (⩽28 years) perform in a critical traffic event when driving highly automated. Conditions of the take-over situation were manipulated by adding a verbal non-driving task (20 questions task) and by variation of traffic density. Two age groups consisting of 36 younger and 36 older drivers drove either with or without a non-driving task on a six-lane highway. They encountered three situations with either no, medium or high traffic density where they had to regain vehicle control and evade an obstacle on the road. Older drivers reacted as fast as younger drivers, however, they differed in their modus operandi as they braked more often and more strongly and maintained a higher time-to-collision (TTC). Deterioration of take-over time and quality caused by increased traffic density and engagement in a non-driving task was on the same level for both age groups. Independent of the traffic density, there was a learning effect for both younger and older drivers in a way that the take-over time decreased, minimum TTC increased and maximum lateral acceleration decreased between the first and the last situation of the experiment. Results highlight that older drivers are able to solve critical traffic events as well as younger drivers, yet their modus operandi differs. Nevertheless, both age groups adapt to the experience of take-over situations in the same way.  相似文献   
37.
Different motor vehicle manufacturers have recently introduced assistance systems that are capable of both longitudinal and lateral vehicle control, while the driver still has to be able to take over the vehicle control at all times (so-called Partial Automation). While these systems usually allow hands-free driving only for short time periods (e.g., 10 s), there has been little research whether allowing longer time periods of hands-off driving actually has a negative impact on driving safety in situations that the automation cannot handle alone. Altogether, two partially automated assistance systems, differing in the permitted hands-off intervals (Hands-off system vs. Hands-on system, n = 20 participants per assistance condition, age 25–70 years) were implemented in the driving simulation with a realistic take-over concept. The Hands-off system is defined by having a permitted hands-off interval of 120 s, while the Hands-on system is defined by a permitted hands-off interval of 10 s. Drivers’ reactions at a functional system limit were tested under conditions of high ecological validity: while driving in a traffic jam, participants unexpectedly encountered a time-critical situation, consisting of a vehicle at standstill that appeared suddenly and required immediate action. A visual-auditory take-over request was issued to the drivers. Regardless of the hands-off interval, all participants brought the vehicle to a safe stop. In spite of a stronger brake reaction with the Hands-on system, no significant differences between assistance levels were found in brake reaction times and the criticality of the situation. The reason for this may be that most of the drivers kept contact with the steering wheel, even in the Hands-off condition. Neither age nor prior experience with ACC was found to impact the results. The study thus demonstrates that permitting longer periods of hands-off driving does not necessarily lead to performance deficits of the driver in the case of take-over situations, if a comprehensive take-over concept is implemented.  相似文献   
38.
    
Sudoku puzzles, which are popular worldwide, require individuals to infer the missing digits in a 9 × 9 array according to the general rule that every digit from 1 to 9 must occur once in each row, in each column, and in each of the 3-by-3 boxes in the array. We present a theory of how individuals solve these puzzles. It postulates that they rely solely on pure deductions, and that they spontaneously acquire various deductive tactics, which differ in their difficulty depending on their “relational complexity”, i.e., the number of constraints on which they depend. A major strategic shift is necessary to acquire tactics for more difficult puzzles: solvers have to keep track of possible digits in a cell. We report three experiments corroborating this theory. We also discuss their implications for theories of reasoning that downplay the role of deduction in everyday reasoning.  相似文献   
39.
Advanced driver assistance systems (ADAS) are taking over an increasing part of the driving task and are supporting the introduction of semi- and fully automated vehicles. As a consequence, a mixed traffic situation is developing where vehicles equipped with automated systems taking over the lateral and longitudinal control of the vehicle will interact with unequipped vehicles (UV) that are not fitted with such automated systems. Different forms of automation are emerging and it appears that regardless of which form is going to become popular on our roads, there is a consensus developing that it will be accompanied by a reduction in time headway (THW). The present simulator study examined whether a ‘contagion’ effect from the short THW held in platoons on the UV drivers would occur. Thirty participants were asked to follow a lead vehicle (LV) on a simulated motorway in three different traffic conditions: surrounding traffic including (1) platoons with short following distance (THW = 0.3 s), (2) large following distance (THW = 1.4 s) or (3) no platoons at all. Participants adapted their driving behaviour by displaying a significant shorter average and minimum THW while driving next to a platoon holding short THWs as when THW was large. They also spent more time keeping a THW below a safety threshold of 1 s. There was no carryover effect from one platoon condition to the other, which can be interpreted as an effect that is not lasting in time. The results of this study point out the importance of examining possibly negative behavioural effects of mixed traffic on UV drivers.  相似文献   
40.
Descente Infinie + Deduction   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号