首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   0篇
  99篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2009年   5篇
  2008年   5篇
  2007年   8篇
  2006年   7篇
  2005年   10篇
  2004年   5篇
  2003年   1篇
  2002年   7篇
  2001年   8篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   5篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1981年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
1.
An example of finite tree Mo is presented such that its predicate logic (i.e. the intermediate predicate logic characterized by the class of all predicate Kripke frames based on Mo) is not finitely axiomatizable. Hence it is shown that the predicate analogue of de Jongh - McKay - Hosoi's theorem on the finite axiomatizability of every finite intermediate propositional logic is not true.  相似文献   
2.
Game logic and its applications I   总被引:3,自引:0,他引:3  
This paper provides a logic framework for investigations of game theoretical problems. We adopt an infinitary extension of classical predicate logic as the base logic of the framework. The reason for an infinitary extension is to express the common knowledge concept explicitly. Depending upon the choice of axioms on the knowledge operators, there is a hierarchy of logics. The limit case is an infinitary predicate extension of modal propositional logic KD4, and is of special interest in applications. In Part I, we develop the basic framework, and show some applications: an epistemic axiomatization of Nash equilibrium and formal undecidability on the playability of a game. To show the formal undecidability, we use a term existence theorem, which will be proved in Part II.The authors thank Hiroakira Ono for helpful discussions and encouragements from the early stage of this research project, and Philippe Mongin, Mitio Takano and a referee of this journal for comments on earlier versions of this paper. The first and second authors are partially supported, respectively, by Tokyo Center of Economic Research and Grant-in-Aids for Scientific Research 04640215, Ministry of Education, Science and Culture.Presented by H. Ono  相似文献   
3.
A general class of labeled sequent calculi is investigated, and necessary and sufficient conditions are given for when such a calculus is sound and complete for a finite-valued logic if the labels are interpreted as sets of truth values (sets-as-signs). Furthermore, it is shown that any finite-valued logic can be given an axiomatization by such a labeled calculus using arbitrary "systems of signs," i.e., of sets of truth values, as labels. The number of labels needed is logarithmic in the number of truth values, and it is shown that this bound is tight.  相似文献   
4.
We introduce non-associative linear logic, which may be seen as the classical version of the non-associative Lambek calculus. We define its sequent calculus, its theory of proof-nets, for which we give a correctness criterion and a sequentialization theorem, and we show proof search in it is polynomial.  相似文献   
5.
6.
Wansing  Heinrich 《Studia Logica》1999,62(1):49-75
The paper provides a uniform Gentzen-style proof-theoretic framework for various subsystems of classical predicate logic. In particular, predicate logics obtained by adopting van Behthem's modal perspective on first-order logic are considered. The Gentzen systems for these logics augment Belnap's display logic by introduction rules for the existential and the universal quantifier. These rules for x and x are analogous to the display introduction rules for the modal operators and and do not themselves allow the Barcan formula or its converse to be derived. En route from the minimal modal predicate logic to full first-order logic, axiomatic extensions are captured by purely structural sequent rules.  相似文献   
7.
We extend to the predicate frame a previous characterization of the maximal intermediate propositional constructive logics. This provides a technique to get maximal intermediate predicate constructive logics starting from suitable sets of classically valid predicate formulae we call maximal nonstandard predicate constructive logics. As an example of this technique, we exhibit two maximal intermediate predicate constructive logics, yet leaving open the problem of stating whether the two logics are distinct. Further properties of these logics will be also investigated.Presented by H. Ono  相似文献   
8.
New propositional and first-order paraconsistent logics (called L ω and FL ω , respectively) are introduced as Gentzen-type sequent calculi with classical and paraconsistent negations. The embedding theorems of L ω and FL ω into propositional (first-order, respectively) classical logic are shown, and the completeness theorems with respect to simple semantics for L ω and FL ω are proved. The cut-elimination theorems for L ω and FL ω are shown using both syntactical ways via the embedding theorems and semantical ways via the completeness theorems. Presented by Yaroslav Shramko and Heinrich Wansing  相似文献   
9.
The fact that the standard probabilistic calculus does not define probabilities for sentences with embedded conditionals is a fundamental problem for the probabilistic theory of conditionals. Several authors have explored ways to assign probabilities to such sentences, but those proposals have come under criticism for making counterintuitive predictions. This paper examines the source of the problematic predictions and proposes an amendment which corrects them in a principled way. The account brings intuitions about counterfactual conditionals to bear on the interpretation of indicatives and relies on the notion of causal (in)dependence.  相似文献   
10.
A tableau is a refutation-based decision procedure for a related logic, and is among the most popular proof procedures for modal logics. In this paper, we present a labelled tableau calculus for a temporalised belief logic called TML+, which is obtained by adding a linear-time temporal logic onto a belief logic by the temporalisation method of Finger and Gabbay. We first establish the soundness and the completeness of the labelled tableau calculus based on the soundness and completeness results of its constituent logics. We then sketch a resolution-type proof procedure that complements the tableau calculus and also propose a model checking algorithm for TML+ based on the recent results for model checking procedures for temporalised logics. TML+ is suitable for formalising trust and agent beliefs and reasoning about their evolution for agent-based systems. Based on the logic TML+, the proposed labelled tableau calculus could be used for analysis, design and verification of agent-based systems operating in dynamic environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号