排序方式: 共有132条查询结果,搜索用时 15 毫秒
1.
Previous studies indicate that, if an automated vehicle communicates its system status and intended behaviour, it could increase user trust and acceptance. However, it is still unclear what types of interfaces will better portray this type of information. The present study evaluated different configurations of screens comparing how they communicated the possible hazards in the environment (e.g. vulnerable road users), and vehicle behaviours (e.g. intended trajectory). These interfaces were presented in a fully automated vehicle tested by 25 participants in an indoor arena. Surveys and interviews measured trust, usability and experience after users were driven by an automated low-speed pod. Participants experienced four types of interfaces, from a simple journey tracker to a windscreen-wide augmented reality (AR) interface which overlays hazards highlighted in the environment and the trajectory of the vehicle. A combination of the survey and interview data showed a clear preference for the AR windscreen and an animated representation of the environment. The trust in the vehicle featuring these interfaces was significantly higher than pretrial measurements. However, some users questioned if they want to see this information all the time. One additional result was that some users felt motion sick when presented with the more engaging content. This paper provides recommendations for the design of interfaces with the potential to improve trust and user experience within highly automated vehicles. 相似文献
2.
Appropriate communication between road users can lead to safe and efficient interactions in mixed traffic. Understanding how road users communicate can support the development of effective communication methods for automated vehicles. We carried out observations of 66 pedestrian-driver and 124 driver-driver interactions in a shared space setting. Specific actions and reactions of the road users involved were recorded using a novel observation protocol. Overall, results showed that pedestrians’ failure to look towards a driver created the greatest uncertainty in the interaction, with the driver slowing down, but not completely stopping, in response to pedestrians. Looking towards the driver also influenced which road user took priority in driver-driver interactions. Groups of pedestrians were more likely to be given priority than an individual pedestrian, and the use of vehicle-based signals were also associated with taking priority during an interaction. Our observations show the importance of non-verbal communication during road user interactions, highlighting it as an essential area of research in the development of automated vehicles, to allow their safe, cooperative, interactions with other road users. Observations were made on a limited number of interactions to inform challenges facing future automated vehicles. Further work should therefore be done to corroborate and extend our findings, to examine interactions between human road users and automated vehicles in shared space settings. 相似文献
3.
We investigated public acceptance of conditionally automated (SAE Level 3) passenger cars using a questionnaire study among 9,118 car-drivers in eight European countries, as part of the European L3Pilot project. 71.06% of respondents considered conditionally automated cars easy to use while 28.03% of respondents planned to buy a conditionally automated car once it is available. 41.85% of respondents would like to use the time in the conditionally automated car for secondary activities. Among these 41.85%, respondents plan to talk to fellow travellers (44.76%), surf the internet, watch videos or TV shows (44%), observe the landscape (41.70%), and work (17.06%). The UTAUT2 (Unified Theory of Acceptance and Use of Technology) was applied to investigate the effects of performance and effort expectancy, social influence, facilitating conditions, and hedonic motivation on the behavioural intention to use conditionally automated cars. Structural equation analysis revealed that the UTAUT2 can be applied to conditional automation, with hedonic motivation, social influence, and performance expectancy influencing the behavioural intention to buy and use a conditionally automated car. The present study also found positive effects of facilitating conditions on effort expectancy and hedonic motivation. Social influence was a positive predictor of hedonic motivation, facilitating conditions, and performance expectancy. Age, gender and experience with advanced driver assistance systems had significant, yet small (<0.10), effects on behavioural intention. The implications of these results on the policy and best practices to enable large-scale implementation of conditionally automated cars on public roads are discussed. 相似文献
4.
5.
Seventeen African dwarf goats (adult females) were trained on oddity tasks using an automated learning device. One odd stimulus and three identical nonodd stimuli were presented on a screen divided into four sectors; the sector for the odd stimulus was varied pseudorandomly. Responses to the odd stimulus were deemed to be correct and were reinforced with food. In phase 1, the goats were trained on eight stimulus configurations. From trial to trial the odd discriminandum was either a + symbol or the letter S, and the nonodd discriminandum was the symbol not used as the odd one. In phase 2, the animals were similarly trained using an unfilled triangle or a filled (i.e., solid black) circle. In phase 3, three new discriminanda were used, an unfilled, small circle with radiating lines, an unfilled heart-shaped symbol, and an unfilled oval; which of the three discriminanda was odd and nonodd was varied from trial to trial. Following these training phases, a transfer test was given, which involved 24 new discriminanda sets. These were presented twice for a total of 48 transfer test trials. Results early in training showed approximately 25% correct, which might be expected by chance in a four-choice task. After 500-2,000 trials, results improved to approximately 40-44% correct. The best-performing subject reached 60-80% correct during training. On the transfer test, this subject had 47.9% correct and that significantly exceeded 25% expected by chance. This finding suggests that some exceptional individuals of African dwarf goats are capable of learning the oddity concept. 相似文献
6.
《Journal of Applied Logic》2015,13(3):188-196
The purpose of this brief note is to prove a limitative theorem for a generalization of the deduction theorem. I discuss the relationship between the deduction theorem and rules of inference. Often when the deduction theorem is claimed to fail, particularly in the case of normal modal logics, it is the result of a confusion over what the deduction theorem is trying to show. The classic deduction theorem is trying to show that all so-called ‘derivable rules’ can be encoded into the object language using the material conditional. The deduction theorem can be generalized in the sense that one can attempt to encode all types of rules into the object language. When a rule is encoded in this way I say that it is reflected in the object language. What I show, however, is that certain logics which reflect a certain kind of rule must be trivial. Therefore, my generalization of the deduction theorem does fail where the classic deduction theorem didn't. 相似文献
7.
To encourage appropriate use of driving automation, we need to understand and monitor driver’s trust and risk perception. We examined (1) how trust and perceived risk are affected by automation, driving conditions and experience and (2) how well perceived risk can be inferred from behaviour and physiology at three levels: over traffic conditions, aggregated risk events, and individual risk events.30 users with and without automation experience drove a Toyota Corolla with driving support. Safety attitude, subjective ratings, behaviour and physiology were examined.Driving support encouraged a positive safety attitude and active driver involvement. It reduced latent hazards while maintaining saliently perceived risks. Drivers frequently overruled lane centring (3.1 times/minute) and kept their feet on or above the pedals using ACC (65.8% of time). They comfortably used support on curvy motorways and monotonic and congested highways but less in unstable traffic and on roundabouts. They trusted the automation 65.4%, perceived 36.0% risk, acknowledged the need to monitor and would not engage in more secondary tasks than during manual driving.Trust-in situation reduced 2.0% when using automation. It was 8.2% higher than trust-in-automation, presumably due to driver self-confidence. Driving conditions or conflicts between driver and automation did not affect trust-in-automation.At the traffic condition level, physiology showed weak and partially counter-intuitive effects. For aggregated risk events, skin conductance had the clearest response but was discernible from baseline in < 50%. Pupil dilation and heart rate only increased with strong braking and active lane departure assist. For individual risk events, a CNN classifier could not identify risk events from physiology. We conclude that GSR, heart rate and pupil dilation respond to perceived risk, but lack specificity to monitor it on individual events. 相似文献
8.
The number of automated vehicles (AVs) is expected to successively increase in the near future. This development has a considerable impact on the informal communication between AVs and pedestrians. Informal communication with the driver will become obsolete during the interaction with AVs. Literature suggests that external human machine interfaces (eHMIs) might substitute the communication between drivers and pedestrians. In the study, we additionally test a recently discussed type of communication in terms of artificial vehicle motion, namely active pitch motion, as an informal communication cue for AVs.N = 54 participants approached AVs in a virtual inner-city traffic environment. We explored the effect of three communication concepts: an artificial vehicle motion, namely active pitch motion, eHMI and the combination of both. Moreover, vehicle types (sports car, limousine, SUV) were varied. A mixed-method approach was applied to investigate the participantś crossing behavior and subjective safety feeling. Furthermore, eye movement parameters were recorded as indicators for mental workload.The results revealed that any communication concept drove beneficial effects on the crossing behavior. The participants crossed the road earlier when an active pitch motion was present, as this was interpreted as a stronger braking. Further, the eHMI and a combination of eHMI and active pitch motion had a positive effect on the crossing behavior. The active pitch motion showed no effect on the subjective safety feeling, while eHMI and the combination enhanced the pedestrianś safety feeling while crossing. The use of communication resulted in less mental workload, as evidenced by eye-tracking parameters. Variations of vehicle types did not result in significant main effects but revealed interactions between parameters. The active pitch motion revealed no learning. In contrast, it took participants several trials for the eHMI and the combination condition to affect their crossing behavior. To sum up, this study indicates that communication between AVs and pedestrians can benefit from the consideration of vehicle motion. 相似文献
9.
The urban traffic system is most likely to change in the next years to a mixed traffic with human drivers, vulnerable road users, and automated vehicles. In the past, the development of external communication approaches for automated vehicles focused on scenarios where an automated vehicle communicates with either a pedestrian or a human driver. However, interactions with more than one traffic partner are more realistic. Therefore, a study with 42 participants was conducted with a multi-agent simulation in which an automated vehicle interacted simultaneously with two participants, a pedestrian and a driver of a manual vehicle. In this study, two main scenarios were investigated in order to evaluate the safety and efficiency of the interactions and to determine whether the human road users feel correctly addressed. In one scenario, the pedestrian had to cross the road in front of the automated and the manual vehicle, which were approaching from different sides. In the other, the manual vehicle had to drive through a bottleneck in front of the oncoming automated vehicle, while the pedestrian had to cross the road after both vehicles passed. The communication approach of the automated vehicle consisted of implicit signals using a speed profile and lateral offset within its lane, and explicit signals using an external human–machine interface. The results of the study show that no collisions were observed in terms of safety and no significant negative effects on efficiency were measured. However, in contrast to single agent interactions, a majority of participants felt wrongly addressed in situations where the automated vehicle signals the right-of-way to the other human road user. It can be concluded that the communication approach of the automated vehicle needs to be modified in order to address certain road users more clearly. 相似文献
10.
The driver of a conditionally automated vehicle equivalent to level 3 of the SAE is obligated to accept a takeover request (TOR) issued by the vehicle. Considerable research has been conducted on the TOR, especially in terms of the effectiveness of multimodal methods. Therefore, in this study, the effectiveness of various multimodalities was compared and analyzed. Thirty-six volunteers were recruited to compare the effects of the multimodalities, and vehicle and physiological data were obtained using a driving simulator. Eight combinations of TOR warnings, including those implemented through LED lights on the A-pillar, earcon, speech message, or vibrations in the back support and seat pan, were analyzed to clarify the corresponding effects. When the LED lights were implemented on the A-pillar, the driver reaction was faster (p = 0.022) and steering deviation was larger (p = 0.024) than those in the case in which no LED lights were implemented. The speech message resulted in a larger steering deviation than that in the case of the earcon (p = 0.044). When vibrations were provided through the haptic seat, the reaction time (p < 0.001) was faster, and the steering deviation (p = 0.001) was larger in the presence of vibrations in the haptic seat than no vibration. An interaction effect was noted between the visual and auditory modalities; notably, the earcon resulted in a small steering deviation and skin conductance response amplitude (SCR amplitude) when implemented with LED lights on the A-pillar, whereas the speech message led to a small steering deviation and SCR amplitude without the LED lights. In the design of a multimodal warning to be used to issue a TOR, the effects of each individual modality and corresponding interaction effects must be considered. These effects must be evaluated through application to various takeover situations. 相似文献