首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2003年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有18条查询结果,搜索用时 0 毫秒
11.
The authors explored application of analytical inverse optimization (ANIO) method to the normal finger forces in unimanual and bimanual prehensile tasks with discrete and continuously changing constraints. The subjects held an instrumented handle vertically with one or two hands. The external torque and grip force changed across trials or within a trial continuously. Principal component analysis showed similar percentages of variance accounted for by the first two principal components across tasks and conditions. Compared to unimanual tasks, bimanual tasks showed significantly more frequent inability to find a cost function leading to a stable solution. In cases of stable solutions, similar second-order polynomials were computed as cost functions across tasks and condition. The bimanual tasks, however, showed significantly worse goodness-of-fit index values. The authors show that ANIO can be used in tasks with slowly changing constraints making it an attractive tool to study optimality of performance in special populations. They also show that ANIO can fail in multifinger tasks, likely due to irreproducible behavior across trials, more likely to happen in bimanual tasks compared to unimanual tasks.  相似文献   
12.
When one finger changes its force, other fingers of the hand can show unintended force changes in the same direction (enslaving) and in the opposite direction (error compensation). We tested a hypothesis that externally imposed changes in finger force predominantly lead to error compensation effects in other fingers thus stabilizing the total force. A novel device, the “inverse piano”, was used to impose controlled displacements to one of the fingers over different magnitudes and at different rates. Subjects (n = 10) pressed with four fingers at a constant force level and then one of the fingers was unexpectedly raised. The subjects were instructed not to interfere with possible changes in the finger forces. Raising a finger caused an increase in its force and a drop in the force of the other three fingers. Overall, total force showed a small increase. Larger force drops were seen in neighbors of the raised finger (proximity effect). The results showed that multi-finger force stabilizing synergies dominate during involuntary reactions to externally imposed finger force changes. Within the referent configuration hypothesis, the data suggest that the instruction “not to interfere” leads to adjustments of the referent coordinates of all the individual fingers.  相似文献   
13.
Multifinger prehension: an overview   总被引:1,自引:0,他引:1  
The authors review the available experimental evidence on what people do when they grasp an object with several digits and then manipulate it. The article includes three parts, each addressing a specific aspect of multifinger prehension. In the first part, the authors discuss manipulation forces (i.e., the resultant force and moment of force exerted on the object) and the digits' contribution to such forces' production. The second part deals with internal forces defined as forces that cancel each other and do not disturb object equilibrium. The authors discuss the role of the internal forces in maintaining the object stability, with respect to such issues as slip prevention, tilt prevention, and resistance to perturbations. The third part is devoted to the motor control of prehension. It covers such topics as prehension synergies, chain effects, the principle of superposition, interfinger connection matrices and reconstruction of neural commands, mechanical advantage of the fingers, and the simultaneous digit adjustment to several mutually reinforcing or conflicting demands.  相似文献   
14.
Relations among finger forces were studied during one-hand and two-hand isometric maximal force production tasks in right- and left-handers. We particularly focused on the phenomena of force deficit during one-hand multi-finger tasks and of bilateral force deficit during two-hand tasks. Ten healthy subjects (five of them left-handed) performed maximal voluntary force production tasks with different finger combinations involving fingers of one of the hands or of both hands together. In one-hand tasks, finger enslaving (forces produced by fingers that were not instructed to produce force) was larger in the dominant hand, while force deficit (drop in individual finger peak force during multi-finger tasks) showed no differences between the hands. An additional drop in finger forces was seen in two-hand tests (bilateral deficit). The magnitude of the bilateral deficit for a hand was larger for tasks involving fewer fingers within the hand and more fingers in the other hand, with a ceiling effect. Smaller bilateral deficit was seen in tasks involving symmetrical finger combinations. In two-hand tasks that could potentially lead to the generation of large total moments in the frontal plane, the hand that was expected to generate larger moments showed larger bilateral deficit, so that the magnitude of the total moment was reduced. These observations suggest that force deficit within a hand and bilateral deficit have different origins but their effects are combined at a certain level of the multi-finger control hierarchy. Bilateral deficit may display task dependence reflecting, in particular, the principle of minimization of secondary moments. A double-representation, mirror-image hypothesis is suggested to provide a neurophysiological basis for the observed patterns of bilateral deficit.  相似文献   
15.
Adjustments to local friction in multifinger prehension   总被引:2,自引:0,他引:2  
The authors studied the effects of surface friction at the digit-object interface on digit forces and moments when 12 participants statically held an object in a 5-digit grasp. The authors changed low-friction contact (LFC) with rayon and high-friction contact (HFC) with sandpaper independently for each digit in all 32 possible combinations. Normal forces of the thumb and virtual finger (VF), an imagined finger with a mechanical effect equal to that of the 4 fingers, increased with the thumb at LFC or with an increase in the number of fingers at LFC. When the thumb was at LFC, the thumb tangential force decreased. The VF tangential force decreased when the number of fingers at LFC increased. The interaction of the local responses to friction and the synergic responses necessary to maintain the equilibrium explain the coordination of individual digit forces.  相似文献   
16.
The authors explored whether standing human participants could voluntarily decrease the amplitude of their natural postural sway when presented with explicit visual feedback and a target. Participants (N = 9) stood quietly, without any feedback and with feedback on the center of pressure coordinate or the head orientation. They were unable to decrease sway amplitude when presented with visual feedback and a target. Decreasing target size led to contrasting effects on the 2 fractions of sway: rambling and trembling. The smaller target was associated with a decrease in rambling and an increase in trembling. Those observations suggest that sway represents a superposition of at least 2 independent processes. They also suggest that providing visual feedback on a variable tied to body sway may not be an effective way to decrease postural sway in young healthy people.  相似文献   
17.
We consider problems of motor redundancy associated with handwriting using the framework of the uncontrolled manifold (UCM) hypothesis. Recent studies of finger coordination during force production tasks have demonstrated that the UCM-hypothesis provides a fruitful framework for analysis of multi-finger actions. In particular, it has been shown that during relatively fast force changes, finger force variance across trials is structured such that a time pattern of total moment produced by the fingers with respect to a point between the two most lateral fingers involved in the task is stabilized while the time pattern of total force may be destabilized. The findings of selective moment stabilization have been interpreted as being conditioned by the experience with everyday motor tasks that commonly pose more strict requirements to stabilization of total moment than to stabilization of total force. We discuss implications of these findings for certain features of handwriting seen in elderly, children, patients with neurological disorders, and forgers.  相似文献   
18.
The authors studied effects of healthy aging on 3 components of the internal force vector during static prehensile tasks. Young and older subjects held an instrumented handle using a 5-digit prismatic grasp under different digit configurations and external torques. Across digit configurations, older subjects showed larger internal normal (grip) and tangential (load-resisting) digit force components and larger internal moment of force. In contrast to earlier reports, safety margin values were not higher in the older subjects. The results show that the increased grip force in older persons is a specific example of a more general age-related problem reflected in the generation of large internal force vectors in prehensile tasks. It is possible that the higher internal forces increase the apparent stiffness of the hand+handle system and, hence, contribute to its stability. This strategy, however, may be maladaptive, energetically wasteful, and inefficient in ensuring safety of hand-held objects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号