首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   1篇
  57篇
  2021年   1篇
  2016年   2篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   4篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
排序方式: 共有57条查询结果,搜索用时 46 毫秒
21.
A program is described for principal component analysis with external information on subjects and variables. This method is calledconstrained principal component analysis (CPCA), in which regression analysis and principal component analysis are combined into a unified framework that allows a full exploration of data structures both within and outside known information on subjects and variables. Many existing methods are special cases of CPCA, and the program can be used for multivariate multiple regression, redundancy analysis, double redundancy analysis, dual scaling with external criteria, vector preference models, and GMANOVA (growth curve models).  相似文献   
22.
In the “pick any/n” method, subjects are asked to choose any number of items from a list of n items according to some criterion. This kind of data can be analyzed as a special case of either multiple-choice data or successive categories data where the number of response categories is limited to two. An item response model was proposed for the latter case, which is a combination of an unfolding model and a choice model. The marginal maximum-likelihood estimation method was developed for parameter estimation to avoid incidental parameters, and an expectation-maximization algorithm used for numerical optimization. Two examples of analysis are given to illustrate the proposed method, which we call MAXSC.  相似文献   
23.
A generalization of Takane's algorithm for dedicom   总被引:1,自引:0,他引:1  
An algorithm is described for fitting the DEDICOM model for the analysis of asymmetric data matrices. This algorithm generalizes an algorithm suggested by Takane in that it uses a damping parameter in the iterative process. Takane's algorithm does not always converge monotonically. Based on the generalized algorithm, a modification of Takane's algorithm is suggested such that this modified algorithm converges monotonically. It is suggested to choose as starting configurations for the algorithm those configurations that yield closed-form solutions in some special cases. Finally, a sufficient condition is described for monotonic convergence of Takane's original algorithm.Financial Support by the Netherlands organization for scientific research (NWO) is gratefully acknowledged. The authors are obliged to Richard Harshman.  相似文献   
24.
Ideal point discriminant analysis   总被引:1,自引:0,他引:1  
A new method of multiple discriminant analysis was developed that allows a mixture of continuous and discrete predictors. The method can be justified under a wide class of distributional assumptions on the predictor variables. The method can also handle three different sampling situations, conditional, joint and separate. In this method both subjects (cases or any other sampling units) and criterion groups are represented as points in a multidimensional euclidean space. The probability of a particular subject belonging to a particular criterion group is stated as a decreasing function of the distance between the corresponding points. A maximum likelihood estimation procedure was developed and implemented in the form of a FORTRAN program. Detailed analyses of two real data sets were reported to demonstrate various advantages of the proposed method. These advantages mostly derive from model evaluation capabilities based on the Akaike Information Criterion (AIC).The work reported in this paper has been supported by Grant A6394 from the Natural Sciences and Engineering Research Council of Canada and by a leave grant from the Social Sciences and Humanities Research Council of Canada to the first author. Portions of this study were conducted while the first author was at the Institute of Statistical Mathematics in Tokyo on leave from McGill University. He would like to express his gratitude to members of the Institute for their hospitality. Thanks are also due to T. Komazawa at the Institute for letting us use his data, to W. J. Krzanowski at the University of Reading for providing us with Armitage, McPherson, and Copas' data, and to Don Ramirez, Jim Ramsay and Stan Sclove for their helpful comments on an earlier draft of this paper.  相似文献   
25.
26.
A new procedure is discussed which fits either the weighted or simple Euclidian model to data that may (a) be defined at either the nominal, ordinal, interval or ratio levels of measurement; (b) have missing observations; (c) be symmetric or asymmetric; (d) be conditional or unconditional; (e) be replicated or unreplicated; and (f) be continuous or discrete. Various special cases of the procedure include the most commonly used individual differences multidimensional scaling models, the familiar nonmetric multidimensional scaling model, and several other previously undiscussed variants.The procedure optimizes the fit of the model directly to the data (not to scalar products determined from the data) by an alternating least squares procedure which is convergent, very quick, and relatively free from local minimum problems.The procedure is evaluated via both Monte Carlo and empirical data. It is found to be robust in the face of measurement error, capable of recovering the true underlying configuration in the Monte Carlo situation, and capable of obtaining structures equivalent to those obtained by other less general procedures in the empirical situation.This project was supported in part by Research Grant No. MH10006 and Research Grant No. MH26504, awarded by the National Institute of Mental Health, DHEW. We wish to thank Robert F. Baker, J. Douglas Carroll, Joseph Kruskal, and Amnon Rapoport for comments on an earlier draft of this paper. Portions of the research reported here were presented to the spring meeting of the Psychometric Society, 1975. ALSCAL, a program to perform the computations discussed in this paper, may be obtained from any of the authors.Jan de Leeuw is currently at Datatheorie, Central Rekeninstituut, Wassenaarseweg 80, Leiden, The Netherlands. Yoshio Takane can be reached at the Department of Psychology, University of Tokyo, Tokyo, Japan.  相似文献   
27.
A multivariate reduced-rank growth curve model is proposed that extends the univariate reducedrank growth curve model to the multivariate case, in which several response variables are measured over multiple time points. The proposed model allows us to investigate the relationships among a number of response variables in a more parsimonious way than the traditional growth curve model. In addition, the method is more flexible than the traditional growth curve model. For example, response variables do not have to be measured at the same time points, nor the same number of time points. It is also possible to apply various kinds of basis function matrices with different ranks across response variables. It is not necessary to specify an entire set of basis functions in advance. Examples are given for illustration.The work reported in this paper was supported by Grant A6394 from the Natural Sciences and Engineering Research Council of Canada to the second author. We thank Jennifer Stephan for her helpful comments on an earlier version of this paper. We also thank Patrick Curran and Terry Duncan for kindly letting us use the NLSY and substance use data, respectively. The substance use data were provided by Grant DA09548 from the National Institute on Drug Abuse.  相似文献   
28.
A comprehensive approach for imposing both row and column constraints on multivariate discrete data is proposed that may be called generalized constrained multiple correspondence analysis (GCMCA). In this method each set of discrete data is first decomposed into several submatrices according to its row and column constraints, and then multiple correspondence analysis (MCA) is applied to the decomposed submatrices to explore relationships among them. This method subsumes existing constrained and unconstrained MCA methods as special cases and also generalizes various kinds of linearly constrained correspondence analysis methods. An example is given to illustrate the proposed method.Heungsun Hwang is now at Claes Fornell International Group. The work reported in this paper was supported by Grant A6394 from the Natural Sciences and Engineering Research Council of Canada to the second author.  相似文献   
29.
We propose a new method of structural equation modeling (SEM) for longitudinal and time series data, named Dynamic GSCA (Generalized Structured Component Analysis). The proposed method extends the original GSCA by incorporating a multivariate autoregressive model to account for the dynamic nature of data taken over time. Dynamic GSCA also incorporates direct and modulating effects of input variables on specific latent variables and on connections between latent variables, respectively. An alternating least square (ALS) algorithm is developed for parameter estimation. An improved bootstrap method called a modified moving block bootstrap method is used to assess reliability of parameter estimates, which deals with time dependence between consecutive observations effectively. We analyze synthetic and real data to illustrate the feasibility of the proposed method.  相似文献   
30.
We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the method solves a matrix eigen-analysis problem through the adoption of a basis expansion approach to approximating data and weight functions. We apply the proposed method to functional magnetic resonance imaging (fMRI) data to identify networks of neural activity that are commonly activated across subjects while carrying out a working memory task.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号