首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   7篇
  90篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2017年   3篇
  2016年   5篇
  2014年   4篇
  2013年   11篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   2篇
  1998年   3篇
  1991年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1963年   1篇
  1962年   1篇
  1960年   1篇
  1950年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
81.
The classic Aesop’s fable, Crow and the Pitcher, has inspired a major line of research in comparative cognition. Over the past several years, five articles (over 32 experiments) have examined the ability of corvids (e.g., rooks, crows, and jays) to complete lab-based analogs of this fable, by requiring them to drop stones and other objects into tubes of water to retrieve a floating worm (Bird and Emery in Curr Biol 19:1–5, 2009b; Cheke et al. in Anim Cogn 14:441–455, 2011; Jelbert et al. in PLoS One 3:e92895, 2014; Logan et al. in PLoS One 7:e103049, 2014; Taylor et al. in Gray R D 12:e26887, 2011). These researchers have stressed the unique potential of this paradigm for understanding causal reasoning in corvids. Ghirlanda and Lind (Anim Behav 123:239–247, 2017) re-evaluated trial-level data from these studies and concluded that initial preferences for functional objects, combined with trial-and-error learning, may account for subjects’ performance on key variants of the paradigm. In the present paper, we use meta-analytic techniques to provide more precise information about the rate and mode of learning that occurs within and across tasks. Within tasks, subjects learned from successful (but not unsuccessful) actions, indicating that higher-order reasoning about phenomena such as mass, volume, and displacement is unlikely to be involved. Furthermore, subjects did not transfer information learned in one task to subsequent tasks, suggesting that corvids do not engage with these tasks as variants of the same problem (i.e., how to generate water displacement to retrieve a floating worm). Our methodological analysis and empirical findings raise the question: Can Aesop’s fable studies distinguish between trial-and-error learning and/or higher-order causal reasoning? We conclude they cannot.  相似文献   
82.
The notion that the family is “the unit of care” for family doctors has been enigmatic and controversial. Yet systems theory and the biopsychosocial model that results when it is imported into medicine make the family system an indispensable and important component of family medicine. The challenge, therefore, is to provide a coherent, plausible account of the role of the family in family practice. Through an extended case presentation and commentary, we elaborate two views of the family in family medicine — treating the patient in the family and treating the family in the patient — and defend both as appropriate foci for care by family doctors. The practical problem that arises when the family is introduced into health care is deciding when to concentrate on the family system. The moral problems that arise concern how extensively doctors may become involved in the personal lives of their patients and families. The patient-centered clinical method provides a strategy for handling both problems. Thus, making the family a focus of care in family medicine can be justified on theoretical, practical, and moral grounds.  相似文献   
83.
Differential‐reinforcement treatments reduce target problem behavior in the short term but at the expense of making it more persistent long term. Basic and translational research based on behavioral momentum theory suggests that combining features of stimuli governing an alternative response with the stimuli governing target responding could make target responding less persistent. However, changes to the alternative stimulus context when combining alternative and target stimuli could diminish the effectiveness of the alternative stimulus in reducing target responding. In an animal model with pigeons, the present study reinforced responding in the presence of target and alternative stimuli. When combining the alternative and target stimuli during extinction, we altered the alternative stimulus through changes in line orientation. We found that (1) combining alternative and target stimuli in extinction more effectively decreased target responding than presenting the target stimulus on its own; (2) combining these stimuli was more effective in decreasing target responding trained with lower reinforcement rates; and (3) changing the alternative stimulus reduced its effectiveness when it was combined with the target stimulus. Therefore, changing alternative stimuli (e.g., therapist, clinical setting) during behavioral treatments that combine alternative and target stimuli could reduce the effectiveness of those treatments in disrupting problem behavior.  相似文献   
84.
85.
86.
87.
Discrimination of sensory signals is essential for an organism to form and retrieve memories of relevance in a given behavioral context. Sensory representations are modified dynamically by changes in behavioral state, facilitating context-dependent selection of behavior, through signals carried by noradrenergic input in mammals, or octopamine (OA) in insects. To understand the circuit mechanisms of this signaling, we characterized the function of two OA neurons, sVUM1 neurons, that originate in the subesophageal zone (SEZ) and target the input region of the memory center, the mushroom body (MB) calyx, in larval Drosophila. We found that sVUM1 neurons target multiple neurons, including olfactory projection neurons (PNs), the inhibitory neuron APL, and a pair of extrinsic output neurons, but relatively few mushroom body intrinsic neurons, Kenyon cells. PN terminals carried the OA receptor Oamb, a Drosophila α1-adrenergic receptor ortholog. Using an odor discrimination learning paradigm, we showed that optogenetic activation of OA neurons compromised discrimination of similar odors but not learning ability. Our results suggest that sVUM1 neurons modify odor representations via multiple extrinsic inputs at the sensory input area to the MB olfactory learning circuit.

Behavioral choices depend on discrimination among “sensory objects,” which are neural representations of multiple coincident sensory inputs, across a range of sensory modalities. For example, “odor objects” (Gottfried 2009; Wilson and Sullivan 2011; Gire et al. 2013) are represented in sparse ensembles of neurons, that are coincidence detectors of multiple parallel inputs from odor quality channels. This principle is used widely in animals, including in mushroom bodies (MBs), the insect center for associative memory (Masuda-Nakagawa et al. 2005; Honegger et al. 2011), and in the piriform cortex (PCx) of mammals (Stettler and Axel 2009; Davison and Ehlers 2011).The selectivity of sensory representations can be modulated dynamically by changes in behavioral state, allowing an animal to learn and respond according to perceptual task. In mammals, the noradrenergic system originating in the locus coeruleus (LC) is implicated in signaling behavioral states such as attention, arousal and expectation (Aston-Jones and Cohen 2005; Sara and Bouret 2012).In insects, octopamine (OA), structurally and functionally similar to noradrenalin (NA) in mammals (Roeder 2005), can mediate changes in behavioral state that often promote activity; for example, sensitization of reflex actions in locusts (Sombati and Hoyle 1984), aggressive state in crickets (Stevenson et al. 2005), initiation and maintenance of flight state (Brembs et al. 2007; Suver et al. 2012), and enhanced excitability of Drosophila motion detection neurons during flight (Strother et al. 2018). Another role of OA is as a reward signal: A single OA neuron, VUMmx1, mediates the reinforcing function of unconditioned stimulus in the honeybee proboscis extension reflex (Hammer 1993; Hammer and Menzel 1998; Menzel 2012). In Drosophila, acquisition of appetitive memory is impaired in TβH mutants, unable to synthesize OA (Schwaerzel et al. 2003), and activation of OA neurons can substitute reinforcing stimulus in appetitive learning (Schroll et al. 2006). Moreover, OA receptors are necessary for reward learning in Drosophila (Burke et al. 2012) and crickets (Matsumoto et al. 2015).To understand the neural mechanisms of OA in higher order sensory discrimination, we used the simple sensory “cortex” of larval Drosophila, the calyx, which is the sensory input region of the mushroom bodies (MBs), the insect memory center. Here, each MB neuron (Kenyon cell [KC]) typically arborizes in several glomeruli, most of which are organized around the terminus of an olfactory projection neuron (PN); KCs thus combinatorially integrate multiple sensory input channels (Masuda-Nakagawa et al. 2005) and are coincidence detectors of multiple inputs. The APL provides inhibitory feedback (Lin et al. 2014; Masuda-Nakagawa et al. 2014) and helps to maintain KC sparse responses and odor selectivity (Honegger et al. 2011), analogous to inhibition in the mammalian PCx (Poo and Isaacson 2009; Stettler and Axel 2009; Gire et al. 2013). Thus, odors are represented as a sparse ensemble of KCs that are highly odor selective, a property beneficial for memory (Olshausen and Field 2004).In addition, the larval MB calyx is innervated by two OA neurons, sVUMmd1 and sVUMmx1, ventral unpaired medial neurons with dendritic fields originating in the mandibular and maxillary neuromeres, respectively, of the SEZ in the third instar larva (Selcho et al. 2014). sVUMmd1 and sVUMmx1 are named as OANa-1 and OANa-2, respectively, in the EM connectomic analysis of a 6-h first instar larva (Eichler et al. 2017; Supplemental Fig. 3 of Saumweber et al. 2018). These sVUM1 neurons also innervate the first olfactory neuropile of the antennal lobe (AL). This pattern of innervation is conserved in other insects, for example, the dorsal unpaired median (DUM) neurons in locusts (for review, see Bräunig and Pflüger 2001), the VUMmx1 neuron in honeybees (Hammer 1993; Schröter et al. 2007), and OA-VUMa2 neurons in adult Drosophila (Busch et al. 2009). In adult Drosophila, OA-VUMa2 neurons also show a dense innervation of the lateral horn, implicated in innate behaviors (Busch et al. 2009). The widespread innervation of the insect olfactory neuropiles also resembles the widespread NA innervation of mammalian olfactory processing areas, such as the olfactory bulb, and piriform cortex, by LC neurons originating in the brainstem.We characterized the innervation pattern and synaptic targets of sVUM1 neurons in the calyx, with MB intrinsic and also extrinsic neurons, the localization of the OA receptor Oamb in the calyx circuit, and the impact of sVUM1 neuron activation on behavioral odor discrimination. For this we used an appetitive conditioning paradigm, and tested the ability of larvae to discriminate between similar odors, as opposed to dissimilar odors. Since the larval connectome is based on a single brain, at first instar stage before octopaminergic connections have become as extensive as at third instar, and to obtain a comprehensive understanding of the synaptic targets of sVUM1s in the third-instar larval calyx, we extended our analysis to previously unanalyzed connectivity of VUM1s, to APL and PNs. Further, we combined light microscopy of third-instar larvae with the connectome described by Eichler et al. (2017).We find that sVUM1 neurons in third-instar larvae contact all the major classes of calyx neuron to some degree, consistent with EM synaptic analysis of the 6-h larva (Eichler et al. 2017). A GFP fusion of the OA receptor Oamb is localized in the terminals of PNs, and activating a subset of five SEZ neurons, including sVUM1 neurons, can affect discrimination of similar odors, without affecting underlying olfactory learning and memory ability. We suggest a broad modulatory effect of sVUM1 neurons in the calyx, including a potential role in modulating PN input at the second synapse in the olfactory pathway.  相似文献   
88.
89.
90.
ABSTRACT

In October 1949, the Coptic Communal Council, al-Majlis al-Millī, failed to run elections as scheduled in the midst of conflict with the clergy. The following April, the Egyptian government intervened by dissolving the Council in favour of an appointed body and by amending its bylaws to allow for the Coptic patriarch and the state to intervene in the case that future elections were delayed. This prompted controversy in the community, as supporters of the Council criticized the intervention for depriving the body of its democratic nature. However, opponents of the Council used the legislation to criticize the body for its aggressive posturing and to assert the authority of the clergy over the laity in communal affairs. This article explores the 1949–1950 intervention alongside the anxieties of late-liberal-era Egypt. By investigating the conversations that occurred in the government and the communal press, I argue that the election crisis served as a flashpoint for parties to lay claim to their particular visions of community by focusing on themes of communal representation, spheres of sovereignty and the maintenance of order.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号