首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   6篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   5篇
  2014年   9篇
  2013年   18篇
  2012年   9篇
  2011年   12篇
  2010年   8篇
  2009年   2篇
  2008年   8篇
  2007年   6篇
  2006年   11篇
  2005年   5篇
  2004年   9篇
  2003年   5篇
  2002年   2篇
  2001年   9篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   7篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1975年   1篇
  1961年   1篇
排序方式: 共有169条查询结果,搜索用时 46 毫秒
51.
Umemura H  Watanabe H  Matsuoka K 《Perception》2007,36(8):1229-1243
We examined whether the position of objects in external space affects the visual-search task associated with the tilt of 3-D objects. An array of cube-like objects was stereoscopically displayed at a distance of 4.5 m on a large screen 1.5 m above or below eye height. Subjects were required to detect a downward-tilted target among upward-tilted distractors or an upward-tilted target among downward-tilted distractors. When the stimuli consisted of shaded parallelepipeds whose upper/bottom faces were lighter than their side faces, the upward-tilted target was detected faster. This result was in accordance with the 'top-view assumption' reported in previous research. Displaying stimuli in the upper position degraded overall performance. However, when the shaded objects whose upper/bottom faces were darker than their side faces were displayed, the detection of a downward-tilted target became as efficient as that of an upward-tilted target only at the upper position. These results indicate that it is possible for the spatial position of the stimulus to promote the detection of a downward-tilted target when shading and perspective information are consistent with the viewing direction.  相似文献   
52.
53.
A disk surrounded by smaller disks looks larger, and one surrounded by larger disks looks smaller than reality. This visual illusion, called the Ebbinghaus–Titchener illusion, remains one of the strongest and most robust illusions induced by contrast with the surrounding stimuli in humans. In the present study, we asked whether bantams would perceive this illusion. We trained three bantams to classify six diameters of target disks surrounded by inducer disks of a constant diameter into “small” or “large”. In the test that followed, the diameters of the inducer disks were systematically changed. The results showed that the Ebbinghaus–Titchener figures also induce a strong illusion in bantams, but in the other direction, that is, bantams perceive a target disk surrounded by smaller disks to be smaller than it really is and vice versa. Possible confounding factors, such as the gap between target disk and inducer disks and the weighted sum of surface of these figural elements, could not account for the subjects’ biased responses. Taken together with the pigeon study by Nakamura et al. (J Exp Psychol Anim Behav Process 34:375–387 2008), these results show that bantams as well as pigeons perceive an illusion induced by assimilation effects, not by contrast ones, for the Ebbinghaus–Titchener types of illusory figures. Perhaps perceptual processes underlying such illusory perception (i.e., lack of contrast effects) shown in bantams and pigeons may be partly shared among other avian species.  相似文献   
54.
Numerical representations influence temporal processing. Previous studies have consistently shown that larger numbers are perceived to last longer than smaller ones. However, whether this effect is modulated by the absolute or relative magnitudes of the numbers has yet to be fully understood. Here, participants observed single- and double-digit Arabic numerals in separate experimental blocks and reproduced stimulus duration of 600 or 1200 ms. Our results replicated previous findings that the duration of larger numbers was reproduced longer than that of smaller numbers within each digit set. Although the effect of numerical magnitude across single- and double-digit numerals was found when the numerals were presented for 600 ms, the difference was negligible when they were presented for 1200 ms, suggesting that relative magnitude is an important factor in the number–time interaction in the suprasecond range. These results suggest that contextual influence on number–time interaction may depend on the actual stimulus duration.  相似文献   
55.
The sunk cost effect involves the bias to stay with an alternative because one has already invested resources, even when there is a better alternative available. In a series of experiments, at various points during a 30-peck requirement, pigeons (Columba livia) could choose between completing the response requirement (at a different location in Experiment 1 or the same location in Experiments 3 and 4) and switching to a constant number of pecks. In three experiments, the pigeons showed a bias to complete the pecks already started, even when that required more pecking. We also demonstrated that the bias depended on the initial investment and was not produced merely because the pigeons preferred a variable alternative over a fixed alternative. The deviation from optimal choice suggests that pigeons show a bias similar to the sunk cost effect in humans.  相似文献   
56.
Confrontation naming tasks assess cognitive processes involved in the main stage of word production. However, in fMRI, the occurrence of movement artifacts necessitates the use of covert paradigms, which has limited clinical applications. Thus, we explored the feasibility of adopting multichannel functional near-infrared spectroscopy (fNIRS) to assess language function during covert and overt naming tasks. Thirty right-handed, healthy adult volunteers underwent both naming tasks and cortical hemodynamics measurement using fNIRS. The overt naming task recruited the classical left-hemisphere language areas (left inferior frontal, superior and middle temporal, precentral, and postcentral gyri) exemplified by an increase in the oxy-Hb signal. Activations were bilateral in the middle and superior temporal gyri. However, the covert naming task recruited activation only in the left-middle temporal gyrus. The activation patterns reflected a major part of the functional network for overt word production, suggesting the clinical importance of fNIRS in the diagnosis of aphasic patients.  相似文献   
57.
58.
Humans have the unique ability to create art, but non-human animals may be able to discriminate “good” art from “bad” art. In this study, I investigated whether pigeons could be trained to discriminate between paintings that had been judged by humans as either “bad” or “good”. To do this, adult human observers first classified several children’s paintings as either “good” (beautiful) or “bad” (ugly). Using operant conditioning procedures, pigeons were then reinforced for pecking at “good” paintings. After the pigeons learned the discrimination task, they were presented with novel pictures of both “good” and “bad” children’s paintings to test whether they had successfully learned to discriminate between these two stimulus categories. The results showed that pigeons could discriminate novel “good” and “bad” paintings. Then, to determine which cues the subjects used for the discrimination, I conducted tests of the stimuli when the paintings were of reduced size or grayscale. In addition, I tested their ability to discriminate when the painting stimuli were mosaic and partial occluded. The pigeons maintained discrimination performance when the paintings were reduced in size. However, discrimination performance decreased when stimuli were presented as grayscale images or when a mosaic effect was applied to the original stimuli in order to disrupt spatial frequency. Thus, the pigeons used both color and pattern cues for their discrimination. The partial occlusion did not disrupt the discriminative behavior suggesting that the pigeons did not attend to particular parts, namely upper, lower, left or right half, of the paintings. These results suggest that the pigeons are capable of learning the concept of a stimulus class that humans name “good” pictures. The second experiment showed that pigeons learned to discriminate watercolor paintings from pastel paintings. The subjects showed generalization to novel paintings. Then, as the first experiment, size reduction test, grayscale test, mosaic processing test and partial occlusion test were carried out. The results suggest that the pigeons used both color and pattern cues for the discrimination and show that non-human animals, such as pigeons, can be trained to discriminate abstract visual stimuli, such as pictures and may also have the ability to learn the concept of “beauty” as defined by humans.  相似文献   
59.
A target circle surrounded by larger "inducer" circles looks smaller, and one surrounded by smaller circles looks larger than they really are. This is the Ebbinghaus-Titchener illusion, which remains one of the strongest and most robust of contrast illusions. Although there have been many studies on this illusion in humans, virtually none have addressed how nonhuman animals perceive the same figures. Here the authors show that the Ebbinghaus-Titchener figures also induce a strong illusion in pigeons but, surprisingly, in the other direction; that is, all five successfully trained pigeons judged the target circle surrounded by larger circles to be larger than it really is and vice versa. Further analyses proved that neither the gaps between target and inducer circles nor the cumulative weighted surface of these figural elements could account for the birds' responses. Pigeons are known to show similarities to humans on various cognitive and perceptual tasks including concept formation, short-term memory, and some visual illusions. Our results, taken together with pigeons' previously demonstrated failure at visual completion, provide strong evidence that pigeons may actually experience a visual world too different for us to imagine.  相似文献   
60.
Various non-mammalian model systems are being explored in the search for mechanisms of learning and memory storage of sufficient generality to contribute to the understanding of mammalian learning mechanisms. The terrestrial mollusk Limax maximus is one such model system in which mammalian-quality learning has been documented using odors as conditioned stimuli. The Limax odor information-processing circuits incorporate several system design features also found in mammalian odor-processing circuits, such as the use of cellular and network oscillations for making odor computations and the use of nitric oxide to control network oscillations. Learning and memory formation has been localized to a particular central circuit, the procerebral lobe, in which selective gene activation occurs through odor learning. Since the isolated Limax brain can perform odor learning in vitro, the circuits and synapses causally linked to learning and memory formation are assessable for further detailed analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号