首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   20篇
  202篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   12篇
  2012年   6篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   6篇
  2007年   10篇
  2006年   12篇
  2005年   8篇
  2004年   6篇
  2003年   5篇
  2002年   9篇
  2001年   10篇
  2000年   7篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   8篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1974年   3篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有202条查询结果,搜索用时 0 毫秒
121.
122.
123.
Visual short-term memory plays a key role in guiding behavior, and individual differences in visual short-term memory capacity are strongly predictive of higher cognitive abilities. To provide a broader evolutionary context for understanding this memory system, we directly compared the behavior of pigeons and humans on a change detection task. Although pigeons had a lower storage capacity and a higher lapse rate than humans, both species stored multiple items in short-term memory and conformed to the same basic performance model. Thus, despite their very different evolutionary histories and neural architectures, pigeons and humans have functionally similar visual short-term memory systems, suggesting that the functional properties of visual short-term memory are subject to similar selective pressures across these distant species.  相似文献   
124.
In Experiment 1, we trained four pigeons to concurrently discriminate displays of 16 same icons (16S) from displays of 16 different icons (16D) as well as between displays of same icons (16S) from displays that contained 15 same icons and one different icon (15S:1D). The birds rapidly learned to discriminate 16S vs. 16D displays, but they failed to learn to discriminate 16S vs. 15S:1D displays. In Experiment 2, the same pigeons acquired the 16S vs. 15S:1D task after being required to locate and peck at the odd-item in the 15S:1D displays. Acquisition of the 16S vs. 15S:1D task had little effect on discriminative performance in the concurrent 16S:16D task, suggesting that a unidimensional entropy explanation for mastery of these two same-different tasks is not viable. During testing, the birds transferred discriminative performance in both tasks to displays composed of different visual stimuli. Such concurrent discrimination learning, performance, and transfer suggest that pigeons are flexible in the way they process the displays seen in these two same-different tasks.  相似文献   
125.
The authors trained pigeons to discriminate images of human faces that displayed: (a) a happy or a neutral expression or (b) a man or a woman. After training the pigeons, the authors used a new procedure called Bubbles to pinpoint the features of the faces that were used to make these discriminations. Bubbles revealed that the features used to discriminate happy from neutral faces were different from those used to discriminate male from female faces. Furthermore, the features that pigeons used to make each of these discriminations overlapped those used by human observers in a companion study (F. Gosselin & P.G. Schyns, 2001). These results show that the Bubbles technique can be effectively applied to nonhuman animals to isolate the functional features of complex visual stimuli.  相似文献   
126.
We trained four pigeons to discriminate a Michotte launching animation from three other animations using a go/no-go task. The pigeons received food for pecking at one of the animations, but not for pecking at the others. The four animations featured two types of interactions among objects: causal (direct launching) and noncausal (delayed, distal, and distal & delayed). Two pigeons were reinforced for pecking at the causal interaction, but not at the noncausal interactions; two other pigeons were reinforced for pecking at the distal & delayed interaction, but not at the other interactions. Both discriminations proved difficult for the pigeons to master; later tests suggested that the pigeons often learned the discriminations by attending to subtle stimulus properties other than the intended ones.  相似文献   
127.
128.
Two experiments examined college students' discrimination of complex visual displays that involved different degrees of variability or "entropy." Displays depicted 16 black and white line drawings of various types (e.g., a brain, a clock, a hand); the participants were required to classify a display in terms of its variability (e.g., a low-variability display contains many identical items, whereas a high-variability display contains few identical items). The participants' accuracy and reaction time scores on a 2-alternative forced-choice discrimination disclosed that people can and do use entropy to classify different levels of visual display variability. Individuals differed in their use of absolute rather than relative entropy.  相似文献   
129.
Three experiments examined superordinate categorization via stimulus equivalence training in pigeons. Experiment 1 established superordinate categories by association with a common number of food pellet reinforcers, plus it established generalization to novel photographic stimuli. Experiment 2 documented generalization of choice responding from stimuli signaling different numbers of food pellets to stimuli signaling different delays to food reinforcement. Experiment 3 indicated that different numbers of food pellets did not substitute as discriminative stimuli for the photographic stimuli with which the food pellets had been paired. The collective results suggest that the effective mediator of superordinate categories that are established via learned stimulus equivalence is not likely to be an accurate representation of the reinforcer, neither is it likely to be a distinctive response that is made to the discriminative stimulus. Motivational or emotional mediation is a more likely account.  相似文献   
130.
We taught 8 pigeons to discriminate 16-icon arrays that differed in their visual variability or "entropy" to see whether the relationship between entropy and discriminative behavior is linear (in which equivalent differences in entropy should produce equivalent changes in behavior) or logarithmic (in which higher entropy values should be less discriminable from one another than lower entropy values). Pigeons received a go/no-go task in which the lower entropy arrays were reinforced for one group and the higher entropy arrays were reinforced for a second group. The superior discrimination of the second group was predicted by a theoretical analysis in which excitatory and inhibitory stimulus generalization gradients fall along a logarithmic, but not a linear scale. Reanalysis of previously published data also yielded results consistent with a logarithmic relationship between entropy and discriminative behavior.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号