首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   15篇
  2022年   3篇
  2020年   7篇
  2019年   10篇
  2018年   9篇
  2017年   9篇
  2016年   13篇
  2015年   6篇
  2014年   5篇
  2013年   28篇
  2012年   6篇
  2011年   8篇
  2010年   6篇
  2009年   6篇
  2008年   10篇
  2007年   11篇
  2006年   10篇
  2005年   7篇
  2004年   6篇
  2003年   9篇
  2002年   4篇
  2001年   3篇
  2000年   11篇
  1999年   6篇
  1998年   6篇
  1997年   3篇
  1994年   3篇
  1992年   4篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1971年   5篇
  1970年   2篇
  1969年   3篇
  1967年   2篇
  1966年   3篇
  1958年   2篇
  1955年   3篇
  1944年   2篇
  1940年   2篇
排序方式: 共有302条查询结果,搜索用时 31 毫秒
141.
Prior research has reported racial/ethnic differences in the early initiation of alcohol use, suggesting that cultural values that are central to specific racial/ethnic groups may be influencing these differences. This 1-year longitudinal study examines associations between two types of cultural values, parental respect (honor for one's parents) and familism (connectedness with family), both measured at baseline, and subsequent alcohol initiation in a sample of 6,054 (approximately 49% male, 57% Hispanic, 22% Asian, 18% non-Hispanic White, and 4% non-Hispanic Black) middle school students in Southern California. We tested whether the associations of cultural values with alcohol initiation could be explained by baseline measures of alcohol resistance self-efficacy (RSE) and alcohol expectancies. We also explored whether these pathways differed by race/ethnicity. In the full sample, adolescents with higher parental respect were less likely to initiate alcohol use, an association that was partially explained by higher RSE and fewer positive alcohol expectancies. Familism was not significantly related to alcohol initiation. Comparing racial/ethnic groups, higher parental respect was protective against alcohol initiation for Whites and Asians, but not Blacks or Hispanics. There were no racial/ethnic differences in the association between familism and alcohol initiation. Results suggest that cultural values are important factors in the decision to use alcohol and these values appear to operate in part, by influencing alcohol positive expectancies and RSE. Interventions that focus on maintaining strong cultural values and building strong bonds between adolescents and their families may help reduce the risk of alcohol initiation. (PsycINFO Database Record (c) 2012 APA, all rights reserved).  相似文献   
142.
Journal of Religion and Health - The aim of this study was to evaluate the impact of a faith-based health promotion program on the ideal health behaviors shared between cardiovascular...  相似文献   
143.
ObjectivesThe purpose of this study was to examine the potential relationship between OCD symptoms and the constructs of depression, anxiety, self-esteem, and commitment to exercise in community-based exercisers.Design and methodA mixed-methods approach was utilized. A sample of 64 female and 21 male participants (M age = 52.1 years) completed a series of online or written questionnaires related to the noted variables, while a subset of 10 participants participated in a qualitative interview to explain their OCD symptoms and exercise behavior.ResultsPearson correlations indicated all psychological constructs were significantly correlated with each other (absolute r's ranged from .27 to .78, all p's < .001), while a canonical correlation analysis revealed one significant function (Wilk's λ = .360, Rc = .80, p < .001). Set 1 (OCD symptoms) explained 36% of the variance in Set 2 (anxiety, depression, self-esteem and commitment to exercise), while Set 2 explained 64% of the variance in Set 1. Four primary themes were established from the qualitative data, including: 1) being involved in sport or physical activity from a young age, 2) high benefits versus low consequences of regular participation in exercise, 3) involvement in detail-oriented jobs, and 4) easy adjustments to unplanned deviations from an exercise schedule.ConclusionsOverall, this research suggests that community-based exercisers with elevated OCD symptoms simply display a healthy attention to the frequency and detail of their physical activity, which facilitates them staying active across a variety of conditions.  相似文献   
144.
Abstract

This study investigated racial differences in the relationship between spouse marital adjustment and dietary adherence of chronic hemodialysis patients. Sixty-eight adult patients and their spouse were subjects. Fifty-two percent of the patients were Caucasians while 48% were Afro-Americans. Spouses completed the Locke-Marital-Questionnaire (LMQ) and provided demographic data pertaining to their patient spouses. The patients' predialysis potassium levels (indices of food intake compliance) for the previous three months were matched with the respective questionnaires. Afro-American spouses, especially males, evidenced significantly lower marital satisfaction than Caucasian spouses. Afro-American female patients seemed to be most compliant as far as food intake wasconcemed. Although the spouse LMQ score was negatively correlated with interdialysis weight gain. Afro-Americans who generally scored lower on the LMQ did not differ from Caucasians in so far as their adherence to the dietary regimen was concerned. Implications for improving quality of life of hemodialysis couples in general, and Afro-Americans in particular are discussed.  相似文献   
145.
To better understand the adaptive capabilities of junior Army leaders, we applied an existing nine-dimension adaptability model to critical incidents of leader behaviors. We examined interview data from two samples of U.S. Army leaders (40 combat veterans and 24 training facilitators). The adaptive behaviors performed most in combat reflected the Deals with Unpredictability and Handles Emergencies dimensions, whereas in training contexts they reflected the Leads Adaptive Teams and Solves Problems Creatively dimensions. The model represented all of the adaptive capabilities; however, the dimensions varied across the samples. To promote adaptability, the leaders recommended developing mental adaptability skills and adaptive teams.  相似文献   
146.
Here, we examined the effect of a daytime nap on changes in virtual maze performance across a single day. Participants either took a short nap or remained awake following training on a virtual maze task. Post-training sleep provided a clear performance benefit at later retest, but only for those participants with prior experience navigating in a three-dimensional (3D) environment. Performance improvements in experienced players were correlated with delta-rich stage 2 sleep. Complementing observations that learning-related brain activity is reiterated during post-navigation NREM sleep in rodents, the present data demonstrate that NREM sleep confers a performance advantage for spatial memory in humans.A growing body of animal and human literature suggests that the consolidation of memories occurs optimally during periods of post-learning sleep. Nonrapid eye movement sleep (NREM), in particular, may be beneficial for the offline consolidation of hippocampus-dependent learning. The neurophysiological basis for this hypothesis is derived largely from electrophysiological studies in rodents, demonstrating that patterns of hippocampal place cell activity first seen during waking exploration are later reexpressed during post-learning sleep (Wilson and McNaughton 1994; Kudrimoti et al. 1999; Nadasdy et al. 1999; Ji and Wilson 2007). Behavioral studies in humans meanwhile demonstrate that NREM sleep is beneficial for declarative memory performance, relative to equivalent periods of wakefulness (Plihal and Born 1997; Tucker et al. 2006). However, the memory tasks typically employed in human research are quite different from those used in rodents, with human studies most often focusing on the memorization of verbal or visual stimuli (Plihal and Born 1997; Schabus et al. 2004; Clemens et al. 2005; Ellenbogen et al. 2006; Tucker et al. 2006; Daurat et al. 2008). Thus far, sleep-dependent memory reactivation has not been established to be directly beneficial for memory performance in an animal model, as the protocols employed in this research typically involve well-learned simple tasks which do not easily lend themselves to measurement of learning across time (Wilson and McNaughton 1994; Kudrimoti et al. 1999). Although the hippocampal memory reactivation described in rodents is a possible explanation for the effect of NREM sleep on human declarative memory, widely divergent methodologies employed across species prohibit confidence in this conclusion.Bridging this conceptual gap, a small handful of studies have begun to explore the relationship between spatial navigation and NREM sleep in humans. Notably, a PET study by Peigneux et al. (2004) demonstrated that learning-related hippocampal activity seen while training on a virtual maze task is again expressed during post-learning human sleep. Furthermore, this hippocampal reactivation strongly predicted overnight improvement on the task (Peigneux et al. 2004). Additional studies have suggested a link between sleep and other types of spatial-related learning, including mental rotation performance (Plihal and Born 1999), the ability to reproduce a complex figure (Clemens et al. 2006; Tucker and Fishbein 2008), performance on a computerized version of Milner''s (1965) “bolt head” maze (Tucker and Fishbein 2008), and memory for the location of verbal information on a screen (Daurat et al. 2008).Yet it remains unclear whether sleep, relative to wakefulness, provides a performance benefit for human route-learning in the context of a realistic spatial environment. Navigation through virtual environments is a strongly hippocampus-dependent task (Peigneux et al. 2004; Astur et al. 2005) and provides an experimental model closely paralleling the spatial exploration tasks employed in the rodent literature. However, the few studies reporting effects of sleep on human navigation performance have been contradictory. Using a navigation task similar to that of Peingeux et al. (2004), Orban et al. (2006) failed to detect any effect of post-learning sleep deprivation on maze performance but did find evidence of altered task-related brain activity, concluding that sleep supports “covert” memory reorganization (Orban et al. 2006). In direct contrast, Ferrara et al. found that spatial memory is improved when a retention interval falls across a night of sleep, relative to when route memory must be retained during daytime wakefulness, or across a night of sleep deprivation (Ferrara et al. 2006, 2008).The present study clarifies these issues by examining the effect of a post-learning nap on complex route-learning in a three-dimensional (3D) virtual environment. When controls are tested at a different time of day than sleep participants, circadian confounds may present a substantial problem. Alternatively, overnight protocols employing sleep-deprived subjects necessarily suffer from confounds related to this sleep deprivation during the retention interval. The use of a daytime nap as a sleep intervention avoids these pitfalls by allowing all subjects to be trained and tested at the same circadian time, and in the absence of sleep deprivation. A series of recent studies confirm that a daytime nap is sufficient to induce performance improvements on declarative and procedural memory tasks, relative to wake subjects (Mednick et al. 2003; Backhaus and Junghanns 2006; Nishida and Walker 2006; Tucker et al. 2006; Lahl et al. 2008; Tucker and Fishbein 2008).Participants (n = 53, 34 female) were trained on a virtual maze-learning task at 12:30 pm. Following training, nap participants lay down for a 1.5-h sleep opportunity. These subjects were allowed to obtain as much NREM sleep as possible but were awoken at the first signs of REM (see Table 
Novice playersExperienced players
TSTa39.29 ± 11.4049.72 ± 11.06
Stage 1 (min)9.79 ± 2.589.28 ± 2.58
Stage 1 (%)27.27 ± 14.5419.18 ± 10.75
Stage 2 (min)26.21 ± 12.0629.31 ± 8.97
Stage 2 (%)64.87 ± 14.4559.17 ± 14.68
SWS (min)3.29 ± 5.879.47 ± 11.49
SWS (%)8.34 ± 14.3518.44 ± 21.83
REM (min)0.00 ± 0.001.16 ± 3.03
REM (%)0.00 ± 0.002.24 ± 5.89
Open in a separate windowaThere were no significant differences between groups on any measure, but there was a trend for total sleep time (TST) to be greater in experienced players (P = 0.052).Means ± SD. SWS, slow wave sleep stages 3 and 4. %, Percent of TST. Of the nap participants, n = 12 did not enter SWS during the sleep period, and n = 3 were awoken from REM sleep. Due to artifact, the sleep recording for one novice player was unusable.The virtual maze task was a simple 3D environment designed for this research (Fig. 1; see also Supplemental Methods). In brief, subjects initially spent 5 min exploring a complex maze and were instructed to remember the layout of the maze environment as well as possible. Subsequently, subjects navigated through the same maze during three test trials, in which they were instructed to reach a specified goal point as quickly as possible. Performance was assessed as time required to reach the goal on each trial, and improvement was calculated as the change in performance from the last training trial (trial 3), to mean performance on the three retest trials (trials 4–6, administered at 5:30 pm). All subjects rated their prior experience with 3D-style game environments on a five-point scale, on which they assessed their typical frequency of play ranging from “every day” to “less than once per year.”Open in a separate windowFigure 1.A sample screen from one location within the maze, as seen by the subject, displayed alongside a bird''s-eye view layout of difficulty level 3.We hypothesized that post-learning sleep would lead to enhanced retest performance on this hippocampus-dependent spatial task. Furthermore, we expected that sleep-dependent performance improvements would correlate with spectral power in low-frequency EEG bands during the nap (<1 Hz slow oscillation and/or 1–4 Hz delta power).Maze performance improved significantly across the six training and retest trials (F(5,230) = 2.35, P = 0.04, η2p = 0.05). Overall, performance changes across the retention interval did not differ significantly between nap and wake subjects (for raw improvement: t(46) = 1.22, P > 0.2; percentage improvement: t(46) = 1.5, P > 0.1). We observed, however, that baseline performance on the final training trial was strongly dependent on prior experience with 3D games, as self-assessed on a five-point scale (F(4,43) = 4.92, P = 0.002; see Supplemental Methods). Prior research suggests that individuals who perform poorly on learning tasks prior to sleep fail to exhibit sleep-dependent performance improvements (Tucker and Fishbein 2008). We therefore investigated whether the effect of sleep on maze performance might be mediated by subjects’ virtual navigation experience. Post-hoc tests (Tukey''s HSD) revealed that only subjects at the bottom of the experience scale (no prior game experience or less than once per year) differed at baseline from subjects at other experience levels (Supplemental Fig. S1). The sample was therefore split into novice (n = 16, experience less than once per year; mean time to complete last training trial = 421 sec ± 209 SD) and experienced players (n = 32, experience equal to or greater than once per year; mean = 184 sec ± 150; t(46) = 4.5, P < 0.001, d = 1.3; see Table Novice players (n = 16)Experienced players (n = 32)P-valueExperience w/first-person games (0–4)0.00 (± 0.00)2.03 (± 1.03)<0.001aAge22.81 (± 3.27)21.16 (± 2.83)>0.3Percent female56.25%18.75%<0.1Maze difficulty level assigned (1–4)2.75 (± 0.86)3.3 (± 0.97)<0.1Baseline performance (last training trial performance)420.69 (± 208.52)184.25 (± 149.93)<0.001aTask difficulty VASb (0–8)3.04 (± 1.17)3.31 (± 1.55)>0.5Task engagement VAS (0–8)3.61 (± 2.31)4.61 (± 1.53)<0.1Mean bedtime from log12:40 (± 74 min)12:38 (± 55 min)>0.9Mean wake time from log8:31 (± 69 min)8:26 (± 44 min)>0.7Training phase SSSc2.63 (± 0.80)2.75 (± 0.95)>0.6Retest SSS2.47 (± 0.92)2.47 (± 1.14)>0.9Open in a separate windowaOther than game experience, novice and experienced participants differed significantly only in terms of baseline performance. Maze difficulty level did not significantly predict either raw improvement (P > 0.6) or percentage improvement (P > 0.2) in completion times, and inclusion of this variable as a covariate in primary analyses of the sleep effect did not alter the outcome of these analyses (see Supplemental Results). Means ± SD.bVAS = Visual Analog Scale.cSSS = Stanford Sleepiness Scale.Sleep imparted a performance benefit relative to wake exclusively for experienced game players. A 2 × 2 ANOVA on changes in maze performance across the day revealed an interaction between prior game experience and sleep condition (raw improvement: F(1,44) = 5.6, P = 0.02, ηp2 = 0.12; percent improvement: F(1,44) = 3.7, P = 0.06, ηp2 = 0.08; see Fig. 2). In experienced players, post-learning sleep provided a performance benefit relative to wakefulness, whether measured as raw (t(30) = 2.5, P = 0.01) or percentage improvement (t(30) = 2.1, P = 0.04). While the performance of experienced gamers deteriorated across wakefulness (raw improvement, P = 0.05; percent improvement, P = 0.02), there was no significant change in performance across the nap (Fig. 2, top). However, stage 2 delta power (1–4 Hz) strongly predicted the presence and extent of post-nap improvement (percentage improvement: r16 = 0.49, P = 0.05; raw improvement: r16 = 0.61, P = 0.01; Fig. 3, top). In fact, those subjects with the greatest stage 2 delta power actually exhibited quite large sleep-dependent improvements (Fig. 3, top). As might be expected from the reciprocal relationship between delta power and spindle activity (De Gennaro and Ferrara 2003), raw performance improvement in experienced players was negatively correlated with power in the spindle band during stage 2 sleep (11–15 Hz; r16 = −0.57, P = 0.02). Percentage improvement was unrelated to spindle power. For further detail on EEG analyses, see Supplemental Methods.Open in a separate windowFigure 2.The effect of sleep on maze performance in Experienced (top) and Novice (bottom) game players. Performance changes are expressed as raw improvement (left) and percentage improvement (right) from last training trial. Error bars represent SEM. (ns) Nonsignificant.Open in a separate windowFigure 3.Performance and delta power. (Top left) Correlation between improvement from last training trial and mean delta power during stage 2 NREM in experienced players. (Bottom left) Correlation between baseline performance and mean delta power across all electrodes during stage 2 NREM sleep in experienced game players. Delta power is expressed as a percent of total power. (Right) Topographic plots depict the correlation between delta power and performance variables at individual electrodes. (○) Indicates electrode cites which retain significance after correction for multiple comparisons.Baseline maze performance (time to complete last training trial) was also correlated with stage 2 delta power during the nap (r16 = 0.71, P = 0.002; Fig. 3, bottom) and predicted subsequent improvement. However, it is critical to note that baseline score predicted performance improvements on the maze selectively within the nap group (correlation with raw improvement: r16 = 0.85, P < 0.001; percentage improvement: r16 = 0.67, P = 0.005). That a similar relationship was not seen in wake subjects suggests sleep-dependent processes were required for this correlation to emerge. After correction for multiple comparisons (significance threshold set to P = 0.02 based on a modified Bonferroni correction, see Supplemental Methods), significant correlations between delta power and baseline performance were observed exclusively over left central/parietal sites, whereas the aforementioned correlations between delta power and performance improvements were observed predominantly over central electrodes (see Fig. 3).Novice game players exhibited substantial performance improvements at retest (raw improvement: t(15) = 3.17, P = 0.006, d = 1.18; percentage improvement: t(15) = 3.33, P = 0.005, d = 1.50; Fig. 2, bottom) but did not benefit from post-learning sleep (P > 0.2 for both raw and percentage improvement measures). In contrast to experienced players, in novices, neither baseline performance (P = 0.2) nor performance improvements across the day (raw improvement: P > 0.9; percent improvement: P > 0.7) were related to delta power during the nap. In novice, as well as in experienced players, sleep architecture variables (TST, time in SWS, time in stage 2, time in stage 1, and time in REM) were unrelated to performance improvements across the day and were unrelated to baseline performance levels.Numerous animal studies have now demonstrated that following performance of spatial tasks, exploration-related brain activity is reexpressed during NREM sleep. The present findings suggest that NREM sleep supports the consolidation of spatial memory in humans. We examined the effect of a daytime nap on changes in virtual maze performance across the day. As hypothesized, post-learning NREM sleep imparted a benefit for maze performance at later retest, relative to a period of wakefulness. Interestingly, sleep only provided this benefit for participants with greater prior experience in navigating through 3D-style virtual environments. These experienced game players performed well at baseline and improved their performance across the course of training. A brief nap on average served to stabilize memory performance in these experienced subjects, with enhancement of memory performance occurring only if the post-learning nap was rich in delta activity. Meanwhile, an equal period spent awake resulted in substantial performance deterioration on the task for experienced players. By design, the nap period was largely devoid of rapid eye movement (REM) sleep (see Table Peters et al. 2007; Tucker and Fishbein 2008). However, it could also be that performance improvements in novices differed qualitatively from those observed in experienced players. Novice players struggled with the motor/procedural aspects of the task, expressing difficulty and frustration with learning to use the keyboard to navigate through the maze, and often colliding with walls and other obstacles. Novices’ improvement at retest may therefore have been procedural, relying on hippocampus-independent processes to support complex visuomotor skills required to move through the on-screen world. The consolidation of similar complex procedural skills has been demonstrated to depend selectively on REM sleep (Plihal and Born 1997; Smith 2001), while, in the present study, sleep subjects obtained only NREM sleep. As NREM sleep is thought to be particularly beneficial for hippocampal memory (Gais and Born 2004; Peigneux et al. 2004; Drosopoulos et al. 2007), we speculate that sleep could have stabilized route memory selectively in experienced players because only these subjects formed robust hippocampus-dependent spatial memory at training.But what specific features of post-learning sleep account for the observed performance benefit in experienced players? Delta band (1–4 Hz) EEG activity in stage 2 NREM predicted improved performance at retest, with those subjects who exhibited the strongest stage 2 delta improving substantially (Fig. 3, top). Meanwhile, a robust correlation between baseline task performance and subsequent delta power (Fig. 3, bottom) suggests that the electrophysiological characteristics of nap sleep may themselves have been determined by subjects’ presleep task performance. Previous studies have indeed demonstrated that intensive learning can lead to an augmentation of early night delta power (i.e., Huber et al. 2004), supporting the notion that increased delta during early nap sleep could have been directly induced by the challenging nature of the maze task. Alternatively, it could be that individuals with greater spatial navigation skill exhibit increased delta activity during this sleep stage. In either case, augmented low-frequency EEG power could support communication between the hippocampus and neocortex during post-learning NREM, at which time it is thought that the hippocampus mediates reactivation of learning-related neural networks, leading to the consolidation and reorganization of memories.Taken together, these data suggest that sleep was beneficial for hippocampus-dependent route memory developed by experienced players during maze learning, protecting this recently formed spatial representation from the deleterious effects of decay and/or interference across the rest of the day. That memory performance was related to specific features of the sleep EEG, and selectively within experienced subjects, argues that an active sleep-specific process accounts for the observed effects. Further suggesting the presence of an active process during sleep, we observed that 20 min of quiet waking with reduced sensory interference was insufficient to prevent deterioration of route memory in the wake group, even though a much shorter period of sleep (6 min) has been shown to impart substantial performance benefits on a declarative memory task (Lahl et al. 2008). These observations suggest that the beneficial influence of the nap cannot be explained exclusively by a passive reduction of sensory input.The present study contributes to a growing body of literature on hippocampus-dependent spatial memory and sleep, demonstrating that sleep confers a performance advantage for spatial navigation in humans. A large body of animal literature has clearly established that spatial exploration leads to reactivation of hippocampal place-cell networks during NREM (i.e., Wilson and McNaughton 1994; Lee and Wilson 2002; Ji and Wilson 2007) However, as “replay” of exploration-related network activity is typically assessed after intensive training on well-learned tasks, the potential contribution of this neuronal-level reactivation to beneficial effects on memory performance remains largely unknown. Here, post-learning sleep clearly led to a stabilization of route memory in humans. Although the present study cannot directly assess neuronal memory “reactivation,” our data are consistent with the notion that recent learning experiences are processed “offline” during sleep, leading to improved post-sleep memory retention.  相似文献   
147.
Religiousness and aggression in adolescents: The mediating roles of self‐control and compassion          下载免费PDF全文
James A. Shepperd  Wendi A. Miller  Colin Tucker Smith 《Aggressive behavior》2015,41(6):608-621
  相似文献   
148.
Left orbital frontal activation in pathological anxiety     
Aki Johanson  Gudmund Smith  Jarl Risberg  Peter Silfverskiöld  Don Tucker 《Anxiety, stress, and coping》2013,26(4):313-328
Twelve patients with anxiety disorder were studied with respect to regional cerebral blood flow (rCBF) using a 32-detector system with the 133 Xe inhalation technique. Measurements were taken during a rest condition and during anxiety induction. Anxiety relevant to the patient's psychological disorder was induced with a projective test, the meta-contrast technique (MCT). Increased blood flow in the orbital frontal region of the left hemisphere was observed in each of the 11 subjects who showed evidence of experiencing anxiety during the procedure. In a second study four additional anxiety patients were studied with a high-resolution (254-detector)Xe rCBF system. In addition to the anxiety and resting conditions, a neutral verbalization condition was added to control for the verbal aspects of the anxiety induction procedure. The results again showed the experience of anxiety to be accompanied by increased blood flow in the left orbital frontal region, with the patients showing this flow increase to be greater in the posterior, paralimbic, areas of the region. These results are consistent with previous suggestions of left hemisphere involvement in anxiety. They also suggest that imaging methods may allow research into what appears to be exaggerated corticolimbic activity in this disorder.  相似文献   
149.
A Comparison of Positive Versus Negative Emotional Expression in a Written Disclosure Study Among Distressed Students     
Daniel L. Segal  Heather C. Tucker  Frederick L. Coolidge 《Journal of aggression, maltreatment & trauma》2013,22(4):367-381
This study investigated the effects of expressing through writing either positive feelings, negative feelings, or both about an upsetting event in order to assess which mode of expression facilitated greater emotional and cognitive processing. Undergraduate student participants with self-reported unresolved upsetting experiences were randomly assigned to one of three writing groups. After completing three writing sessions, they were evaluated at baseline, postexperimentally, and at 1-month follow-up. All groups experienced positive benefits; however, participants in the positive writing group showed greater adaptive cognitive changes than the other groups. Thus it appears that the written expression of positive feelings is as therapeutic as the written expression of negative emotions, which may prompt increased cognitive reorganization or benefit finding among a nonclinical sample.  相似文献   
150.
Rumination and suicidal ideation: The moderating roles of hope and optimism     
Raymond P. Tucker  LaRicka R. Wingate  Victoria M. O’Keefe  Adam C. Mills  Kathy Rasmussen  Collin L. Davidson  DeMond M. Grant 《Personality and individual differences》2013
The current study aimed to investigate whether the correlation between rumination and suicidal ideation is moderated by the presence of hope and optimism. It was hypothesized that both hope and optimism would moderate (weaken) the relationship between rumination and suicidal ideation. Two hundred and ninety-eight participants completed self-report measures of hope, optimism, rumination (brooding and reflection), and depression. Results demonstrated that both hope and optimism weakened the relationship between rumination and suicidal ideation, as well as the relationships between both subscales of rumination and suicidal thinking. These results were found when controlling for symptoms of depression. Results suggest that a ruminative thinking style may be most harmful when an absence of hope or optimism is also present.  相似文献   
[首页] « 上一页 [10] [11] [12] [13] [14] 15 [16] [17] [18] [19] [20] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号