首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   596篇
  免费   39篇
  635篇
  2024年   3篇
  2023年   9篇
  2022年   4篇
  2021年   7篇
  2020年   10篇
  2019年   16篇
  2018年   24篇
  2017年   16篇
  2016年   25篇
  2015年   20篇
  2014年   16篇
  2013年   65篇
  2012年   34篇
  2011年   37篇
  2010年   27篇
  2009年   23篇
  2008年   23篇
  2007年   40篇
  2006年   33篇
  2005年   34篇
  2004年   26篇
  2003年   14篇
  2002年   23篇
  2001年   22篇
  2000年   7篇
  1999年   7篇
  1998年   8篇
  1997年   9篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   5篇
  1984年   2篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1959年   1篇
排序方式: 共有635条查询结果,搜索用时 0 毫秒
631.
Sleep following learning facilitates the consolidation of memories. This effect has often been attributed to sleep-specific factors, such as the presence of sleep spindles or slow waves in the electroencephalogram (EEG). However, recent studies suggest that simply resting quietly while awake could confer a similar memory benefit. In the current study, we examined the effects of sleep, quiet rest, and active wakefulness on the consolidation of declarative and procedural memory. We hypothesized that sleep and eyes-closed quiet rest would both benefit memory compared with a period of active wakefulness. After completing a declarative and a procedural memory task, participants began a 30-min retention period with PSG (polysomnographic) monitoring, in which they either slept (n = 24), quietly rested with their eyes closed (n = 22), or completed a distractor task (n = 29). Following the retention period, participants were again tested on their memory for the two learning tasks. As hypothesized, sleep and quiet rest both led to better performance on the declarative and procedural memory tasks than did the distractor task. Moreover, the performance advantages conferred by rest were indistinguishable from those of sleep. These data suggest that neurobiology specific to sleep might not be necessary to induce the consolidation of memory, at least across very short retention intervals. Instead, offline memory consolidation may function opportunistically, occurring during either sleep or stimulus-free rest, provided a favorable neurobiological milieu and sufficient reduction of new encoding.

Of the myriad new experiences we encode each day, only a fraction are remembered over the long-term. The formation of long-term memory is crucial for optimal functioning in our everyday lives and for building knowledge across days, weeks, and years. Such enduring memories require not only the effective encoding of new information, but also a set of postencoding processes, termed “consolidation,” that function to stabilize and transform new memory traces over time (McGaugh 2000; Frankland and Bontempi 2005; Genzel and Wixted 2017).Consolidation of memory is better supported by some states of consciousness than others. For example, sleep has long been known to optimize memory consolidation, purportedly due to specific neurobiology that actively promotes the consolidation process (Diekelmann and Born 2010). Numerous studies have demonstrated that sleep facilitates the consolidation of both declarative and procedural memories. Slow oscillations (Huber et al. 2004; Marshall et al. 2006) and slow wave sleep (SWS) (Alger et al. 2012; Diekelmann et al. 2012) are thought to especially benefit hippocampus-dependent, declarative memory. Meanwhile, various forms of implicit and procedural memory have been linked to rapid eye movement (REM) sleep (Plihal and Born 1997; Mednick et al. 2009) or non-REM stage 2 (N2) sleep (Walker et al. 2002; Tucker and Fishbein 2009).A potential mechanism of offline memory consolidation during sleep is memory “reactivation,” in which patterns of neural activity in the hippocampus and cortex associated with awake experience are reiterated after learning. For example, when rats sleep after being trained on a spatial learning task, hippocampal “place cells” fire again in the same order as when the animals were being trained on the task during wake (Lee and Wilson 2002; Ji and Wilson 2007). Such neural reactivation not only occurs in the hippocampus, but also concurrently in a variety of cortical areas (Ji and Wilson 2007; Peyrache et al. 2009; Kaefer et al. 2020). The recent advent of optogenetics has allowed experimental investigation of memory reactivation in animal models. Experimentally disrupting the hippocampal ripple oscillations during which reactivation occurs impairs memory (Girardeau et al. 2009; Ego-Stengel and Wilson 2010). Conversely, selectively reactivating neural ensembles related to a particular memory appears to induce consolidation, particularly when this manipulation is applied during sleep or light amnesia (de Sousa et al. 2019).But is sleep the only brain state that facilitates memory consolidation in this way? It has been argued that sleep-specific neurobiology, including sleep slow waves (Alger et al. 2012), sleep spindles (Wamsley et al. 2012; Mednick et al. 2013; Laventure et al. 2016), and/or REM sleep (Karni et al. 1994; Stickgold et al. 2000; McDevitt et al. 2015; Boyce et al. 2016), is required for offline memory reactivation and consolidation to occur, or at least to occur optimally. However, a growing body of literature indicates that stimulus-free waking rest can similarly facilitate consolidation (Wamsley 2019). In two influential experiments, Dewar et al. (2012) demonstrated that compared with participants who completed a nonverbal distractor task, those who rested quietly with their eyes closed in a darkened room for 10 min after learning showed better memory for short stories encoded prior to the retention period. The rest group significantly outperformed the wake group after 15 min, 30 min, and 7 d (experiment 1), even in the absence of retrieval practice during the 7-d period (experiment 2).This effect of post-training rest on memory retention has been reported in an increasing number of papers across the last decade (Gottselig et al. 2004; Mercer 2015; Martini et al. 2018; Wamsley 2019; Martini and Sachse 2020). Brokaw et al. (2016) replicated the behavioral observations of Dewar et al. (2012) and showed that this memory benefit was associated with EEG slow oscillation activity, which is thought to facilitate hippocampal–cortical communication and concomitant memory consolidation during sleep (Marshall et al. 2006; Mölle and Born 2011). A recent study by Sattari et al. (2019) also linked improved memory performance to waking EEG slow oscillations, suggesting that the memory-enhancing effects of rest and sleep may share a common mechanism.Of course, it has been known for decades that at least some consolidation must occur during wakefulness. Local, cellular level consolidation begins to stabilize memory immediately following encoding (Bailey and Kandel 2008; Redondo and Morris 2011), enabling us to recall the events of the previous hours in the absence of intervening sleep. The novel suggestion of these more recent studies is that consolidation does not occur equivalently during all types of wakefulness (Dewar et al. 2012; Brokaw et al. 2016). Instead, stimulus-free rest periods appear to have features that are especially suited to facilitate memory.Reduced sensory processing during eyes-closed rest may be one factor accounting for the memory facilitation effect. However, even internally generated stimuli can also function to block consolidation, as demonstrated by the fact that mental tasks such as retrieval of autobiographical memory and focused meditation are also associated with a reduction in rest''s memory benefit (Craig et al. 2014; Collins and Wamsley 2020). Similarly, we reported in two previous studies that individuals with a high propensity for daydreaming show less memory benefit following a period of rest, presumably because intense internally generated mental activity inhibits consolidation (Humiston et al. 2019; Wamsley and Summer 2020).Together, these observations suggest that consolidation occurs during wakefulness when sensory processing is reduced, when low-frequency EEG oscillations are increased, and when internally generated cognition is at a minimum. Therefore, consolidation may not depend on neural mechanisms specific to sleep, instead opportunistically occurring across multiple states of consciousness whenever the correct conditions are met (Mednick et al. 2011). According to the opportunistic theory of memory consolidation, the processes of encoding and consolidation are mutually exclusive: During any brain state in which we are not currently encoding new information, existing memories consolidate as the neural milieu becomes favorable (Mednick et al. 2011; Wamsley 2019). Unoccupied quiet rest, like sleep, is a state in which the encoding of new stimuli is reduced. In addition, quiet rest and sleep also share a number of neurobiological features that are thought to actively promote memory consolidation, including overall slower EEG in comparison with active wakefulness, increased activation of default-mode network brain structures (Buckner and Vincent 2007), and decreased levels of acetylcholine in the brain (Hasselmo and McGaughy 2004). Additionally, the cellular-level offline reactivation of memory occurs not only during sleep, but also during quiet rest (Foster and Wilson 2006; Karlsson and Frank 2009; Carr et al. 2011; Staresina et al. 2013). At the same time, it must be noted that eyes-closed rest does not replicate all aspects of sleep neurobiology proposed to facilitate memory. For example, sleep spindle oscillations and sleep-specific neurohormonal changes are not present during eyes-closed rest.While sleep and rest both benefit memory in comparison with active wakefulness, it is not known whether they do so equivalently. With few studies directly comparing the size of rest''s memory benefit with that of sleep, it remains possible that sleep provides some benefit above and beyond that conferred by waking rest. The limited number of prior studies in this area have shown mixed results. As opposed to the type of truly task-free condition used in the waking rest studies reviewed above, most experiments comparing active wakefulness, rest, and sleep have used a “rest” condition in which participants are asked to complete an undemanding activity such as listening to music or books on tape. This approach sacrifices complete sensory restriction in return for allowing rest condition participants to maintain wakefulness for longer periods of time. For example, Mednick and colleagues have used quiet rest conditions in which participants listen to music or audiobooks, finding that this form of quiet rest facilitates memory equivalently to sleep for some forms of learning (Mednick et al. 2009; Sattari et al. 2019), but not for others (Mednick et al. 2002; McDevitt et al. 2014). Keeping rest participants awake via verbal instructions to alternately open and close their eyes, Simor et al. (2018) found no effect of post-training rest or sleep on performance of a serial reaction time task, relative to an active wake control. While these observations might indicate that only selected forms of memory can be consolidated during resting wakefulness, it is possible that the encoding of meaningful auditory stimuli during these rest conditions prevents optimal consolidation.Only a few prior studies have compared the memory effects of sleep with those of an equivalent duration of eyes-closed, entirely task-free rest. For example, Gottselig et al. (2004) successfully compared the effects of sleep, quiet rest, and active wakefulness on memory consolidation using a carefully controlled rest condition without any stimuli presented to the participants. Using a statistical auditory sequence learning task, they reported that both sleep and rest equivalently facilitated retention. In contrast, using a declarative memory task, Piosczyk et al. (2013) found that neither quiet rest nor sleep improved memory more than active wakefulness. A recent study from our own laboratory directly compared sleep, rest, and active wakefulness using declarative and procedural tasks commonly used in studies of sleep and memory (Tucker et al. 2020). However, high rates of attrition (due to rest participants inadvertently falling asleep and sleep participants failing to obtain sleep) prevented a robust test of our hypothesis that sleep and quiet rest would equivalently benefit memory, relative to active wakefulness.The goal of the current study was to directly compare the memory benefit of a brief nap (<30 min) with that of an equivalent duration of task-free quiet rest. We hypothesized that a brief period of sleep and quiet rest would have an equivalent effect on the consolidation of both declarative and procedural memories, significantly boosting memory retention compared with an equivalent duration of active wakefulness. Following our previous work, we expected that memory retention across sleep and quiet rest would be associated with slow oscillation EEG power in the <1-Hz range, but that participants with high trait daydreaming propensity would show less improvement across quiet rest.  相似文献   
632.
Due to seemingly mixed empirical results, questions persist about the possible role of deployments and combat exposure. We conducted a narrative review and meta‐analysis of 22 published studies to integrate findings regarding the relationship of deployment‐related predictors (i.e., deployment, deployment to a combat zone, combat experience, and exposure to specific combat events) with suicide‐related outcomes (i.e., suicide ideation, attempt, and death). Across all predictors and outcomes, the combined effect was small and positive, = .08 [0.04, 0.13], and marked by significant heterogeneity, I2 = 99.9%, Q(21)=4880.16, < .0001, corresponding to a 25% increased risk for suicide‐related outcomes among those who have deployed. Studies examining the relationship between exposure to killing and atrocities (= 5) showed the largest combined effect, r = .12 [0.08, 0.17], and less heterogeneity, I2 = 84.4%, Q(4)=34.96, < .0001, corresponding to a 43% increased risk for suicide‐related outcomes among those exposed to killing or atrocity. Implications for theory, research, and clinical practice are discussed.  相似文献   
633.
Abstract

Sizeism permeates and shapes how scientific and professional communities—including therapists—perceive, understand, and behave toward anyone considered fat. In this article, we use scientific evidence to argue for the recognition and establishment of fat acceptance to subvert sizeism. We first critically review the Weight Normative Approach, which dominates scientific discourse on weight, despite being based on sizeist assumptions that are discredited by data. We then articulate the tenets of the Weight Inclusive Approach, which honors size diversity and the promotion of wellness within a social justice framework. We end with strategies for therapists to align their practice with the Weight Inclusive Approach.  相似文献   
634.
635.
The goal of this investigation was to determine which reading instruction improves multiple science text comprehension for college student readers. The authors first identified the cognitive processing strategies that are predictive of multiple science text comprehension (Study 1) and then used what they learned to experimentally test the effectiveness of explicit pre-reading instructions (Study 2). Study 1 showed that self-explaining was positively related to comprehension tasks. Study 2 showed that explicitly instructing participants to self-explain while reading multiple science texts enhanced comprehension test performance. These results showed that self-explanation during reading is a successful strategy for enhancing multiple science text comprehension.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号