首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   23篇
  2023年   1篇
  2022年   11篇
  2021年   9篇
  2020年   16篇
  2019年   19篇
  2018年   31篇
  2017年   27篇
  2016年   30篇
  2015年   14篇
  2014年   25篇
  2013年   45篇
  2012年   35篇
  2011年   33篇
  2010年   27篇
  2009年   20篇
  2008年   16篇
  2007年   17篇
  2006年   24篇
  2005年   16篇
  2004年   19篇
  2003年   18篇
  2002年   13篇
  2001年   6篇
  2000年   8篇
  1999年   10篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1994年   4篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有525条查询结果,搜索用时 46 毫秒
441.
Emerging adults share the positive events in their lives with their friends, a process that is related to higher levels of happiness when they perceive their friends’ responses as more positive and less negative. What might explain this association? The four studies (N = 2997) in this research tested the proposal that positive friendship experiences mediate the relationship between perceived responses to capitalization attempts (PRCA) and happiness. Study 1 showed that same-sex friendship quality mediated the relationship between PRCA and happiness. Study 2 supported the model for cross-sex friendships. Study 3 tested the generalizability of the model for the immediate social network of emerging adults and showed that the model was only applicable to best friendships. Study 4 documented that satisfaction of basic psychological needs in a same-sex friendship was another mediator of the PRCA-happiness link. Although the friendship experiences and PRCA scores of women were higher compared to men in every study, the associations of PRCA with friendship experiences and happiness were generally similar and the model was supported for both men and women. The implications of the findings were discussed and suggestions for future research were provided.  相似文献   
442.
Real-time reflection-in-action is a critical capability for effective practitioners, just as the more common reflection-on-action is critical for learning. Reflective practice is typically regarded as an individual activity. However, to be an effective negotiator involves real-time reflection-in-action. Results from a Masters-level Negotiation unit show that reflection in negotiation contexts is emergent rather than sudden, is collective, and typically occurs in a break from the negotiation action. We develop the work of Schön and Yanow and Tsoukas to propose a framework of reflection-in-action that better fits the interactive context of negotiation and explore some implications for the teaching of negotiation and other similar professional situations.  相似文献   
443.
Researchers have documented the positive effects of classwide peer tutoring on academic performance, engagement, and other social behaviors of students with and without disabilities. Commonly, in classwide peer tutoring, students are paired and the class is divided in half. Points are awarded for tutoring behavior and academic responding during the tutoring session. At the end of the session, the half of the class with the most points earns a reward. In the current study, a fifth-grade teacher implemented classwide peer tutoring for multiplication facts. Instead of the traditional reinforcement system, a randomized classwide interdependent group contingency was implemented. Applying a multiple-probe design across problem sets, students demonstrated increased multiplication fact fluency across three problem sets. Discussion focuses on applied implications for contingency management when implementing classwide peer tutoring programs.  相似文献   
444.
Two experiments investigated the role that mental set plays in reading aloud using the task choice procedure developed by Besner and Care [Besner, D., & Care, S. (2003). A paradigm for exploring what the mind does while deciding what it should do. Canadian Journal of Experimental Psychology, 57, 311–320]. Subjects were presented with a word, and asked to either read it aloud or decide whether it appeared in upper/lower case. Task information, in the form of a brief auditory cue, appeared 750 ms before the word, or at the same time as the word. Experiment 1 yielded evidence consistent with the claim that at least some pre-lexical processing can be carried out in parallel with decoding the task cue (the 0 SOA condition yielded a smaller contrast effect than the long SOA condition). Experiment 2 provided evidence that such processing is restricted to pre-lexical levels (the word frequency effect was equivalent at the 0 SOA and the long SOA). These data suggest that a task set is a necessary preliminary to lexical processing when reading aloud.  相似文献   
445.
Anatomically selective medial prefrontal cortical projections regulate the extinction of stimulus–reinforcement associations, but the mechanisms underlying extinction of an instrumental response for reward are less well-defined and may involve structures that regulate goal-directed action. We show brain-derived neurotrophic factor (bdnf) knock-down in the prelimbic, but not orbitofrontal, cortex accelerates the initial extinction of instrumental responding for food and reduces striatal BDNF protein. When knock-down mice were provided with alternative response options to readily obtain reinforcement, extinction of the previously reinforced response was unaffected, consistent with the hypothesis that the prelimbic cortex promotes instrumental action, particularly when reinforcement is uncertain or unavailable.The rodent medial prefrontal cortex contains cytoarchitectonically distinct subregions that can be differentiated based on efferent and afferent projection patterns, with dorsal regions—including the dorsal prelimbic cortex (PLc)—sharing similar functions that differ from those of the ventromedial prefrontal cortex, which includes the medial orbitofrontal cortex (mOFC) and infralimbic cortex. These dorsal/ventral networks are considered “go” and “stop” systems, respectively, that coincidentally guide behavior (Heidbreder and Groenewegen 2003). For example, the PLc is essential for maintaining instrumental responding for food when reinforcement is uncertain (Corbit and Balleine 2003; Gourley et al. 2008a). By contrast, ventromedial structures are associated with response inhibition, particularly in the context of stimulus–reinforcement associations (Heidbreder and Groenewegen 2003).We explore the hypothesis that the PLc may also promote goal-directed responding in the absence of reinforcement, thereby slowing the extinction of a previously reinforced instrumental response. If this is the case, diminution of the biological factors essential for activity-dependent neuroplasticity and cytoskeletal structure within the PLc might be expected to shift the balance between a dorsal “go” network and ventral “stop” network. The consequence would be a rapid decline in instrumental responding during extinction training. Indeed, we report that such a manipulation—virally knocking down BDNF, which promotes long-term potentiation (Kang and Schuman 1995; Korte et al. 1995, 1996; Patterson et al. 1996) and neuronal outgrowth (McAllister et al. 1995, 1996; Xu et al. 2000a,b; Gorski et al. 2003)—within the PLc facilitates the extinction of instrumental action.In the first experiment, group-housed ≥10 wk-old male mice bred in-house and homozygous for a floxed bdnf gene (Rios et al. 2001) were anaesthetized with 1:1 2-methyl-2-butanol and tribromoethanol (Sigma Aldrich) diluted 40-fold with saline. Mice were infused into the PLc (+2.0AP, −2.8DV, ±0.1ML) with an adeno-associated virus (AAV) expressing enhanced green fluorescent protein (EGFP) ± Cre. With needles (Hamilton Co.) centered at bregma, stereotaxic coordinates were located using Kopf''s digital coordinate system with 1/100-mm resolution (David Kopf Instruments). Viral constructs were infused over 5 min with 0.5 μL/hemisphere; needles were left in place for an additional 4 min. Mice were allowed to recover for at least 2 wk, allowing for viral-mediated gene knock-down (Berton et al. 2006; Graham et al. 2007; Unger et al. 2007). All procedures were Yale University Animal Care and Use Committee approved.Mice were then food-restricted (90-min access/day) and trained to perform an instrumental response (nose poke) for food reinforcement using Med-Associates operant conditioning chambers controlled by Med-Associates software. These 25-min training sessions were conducted daily, and one, two, or three responses on one of three apertures were reinforced with a 20-mg grain-based food pellet (variable ratio 2 schedule of reinforcement; Bioserv). Two-factor (knock-down × session) analysis of variance (ANOVA) with repeated measures (RM) indicated bdnf knock-down did not affect the acquisition of instrumental responding (main effect of infusion and infusion × session interaction Fs < 1) (Fig. 1A).Open in a separate windowFigure 1.PLc bdnf knock-down decreases instrumental responding in extinction. (A) Viral-mediated PLc bdnf knock-down had no effects on the acquisition of an instrumental response for food. Responses made on the active aperture are shown (left). Responding in extinction was, however, diminished during the first extinction session (right). The break in the extinction curve represents the passage of 1 d. (B) A second group of mice was trained to respond for food before viral construct infusion. Responding during reacquisition reminder sessions after recovery was unaffected, but extinction was again immediately facilitated, as indicated by fewer responses made during sessions 1 and 2. Representative EGFP spread is inset. (C) As a control measure, this experiment was replicated in mice initially trained to perform the task, then given a mOFC, rather than PLc, bdnf knock-down. Although reinforced responding during reacquisition was diminished, responding during extinction was unchanged. Representative EGFP spread is inset. (D) In a reversal task, PLc bdnf knock-down mice did not differ in their ability to “reverse” their responding on an aperture on the opposite side of the chamber; response inhibition—extinction of responding on the previously active aperture—under these circumstances was also unchanged. (E) An enlarged EGFP image is shown (taken from inside the white box in C). EGFP radiates laterally from the infusion site, and the medial wall of the PFC can be seen at left. Symbols represent means (+ SEM) per group (*P < 0.05; P = 0.07). Arrows indicate the time of knock-down, relative to testing sessions.Response extinction was then tested with 10 15-min nonreinforced sessions (five sessions/day). Here, responses made on the previously active aperture declined as expected (F(9,72) = 6.7, P < 0.001). An interaction between group and session for responses on the active aperture was also identified (F(9,72) = 2.3, P = 0.03). Tukey''s post-hoc tests indicated responses made during session 1 were reduced in knock-down mice (P = 0.002) (Fig. 1A). Responses made during session 2 were reduced at a trend level of significance (P = 0.07), but responding during other sessions did not differ (all Ps > 0.3), suggesting PLc bdnf knock-down facilitated initial response suppression, but not necessarily the consolidation or expression of extinction learning (Rescorla and Heth 1975).Because knock-down could conceivably regulate extinction processes via effects on initial instrumental conditioning, we trained another group of mice to perform the response prior to knock-down. Mice were then matched based on responses made during training, and surgery proceeded. After recovery, mice were given three “reacquisition” sessions identical to training sessions, during which no differences were found for responses made on the reinforced aperture (main effect of group and interaction Fs < 1) (Fig. 1B). When reinforcement was withheld, however, bdnf knock-down mice again made fewer responses relative to control mice during sessions 1 and 2 (interaction F(9,135) = 2.3, P = 0.02; post-hoc Ps < 0.01) but not later sessions (Fig. 1B). These data further support our conclusion that PLc bdnf knock-down decreases instrumental responding during the early phases of extinction, but do not indicate whether this effect is behaviorally or anatomically specific. In this group, post-mortem EGFP distribution indicated two mice had only unilateral bdnf knock-down; these animals were excluded.To address anatomical specificity, we replicated this experiment with bdnf knocked down in the ventrally situated mOFC. This site was chosen over the infralimbic cortex because we had greater confidence we could achieve anatomically selective knock-down in this larger region. Viral constructs were infused over 3 min with 0.25 μL/hemisphere and needles aimed AP +2.3, DV −3.0, ML ±0.1 and left in place for an additional 4 min. During reacquisition, a main effect of group on responses made on the active aperture indicated mOFC bdnf knock-down, unlike PLc bdnf knock-down, decreased reinforced responding (F(1,9) = 7.9, P = 0.02; interaction F < 1) (Fig. 1C). No effects of knock-down were, however, detected for responses made during extinction testing (group and interaction Fs < 1) (Fig. 1C). This profile is distinct from PLc bdnf knock-down mice, in which nonreinforced, but not reinforced, responding was affected. In this group, one animal with unilateral bdnf knock-down was excluded.To address behavioral specificity, mice from Figure 1B were retrained until responding for food on the active aperture was reinstated. Then, the location of the active aperture was “reversed,” such that the previously nonreinforced aperture on the opposite side of the chamber wall was reinforced. In other words, mice trained to respond on the right-side aperture were now reinforced for responding on the left-side aperture and vice versa. This “reversal” procedure allowed us to test whether PLc bdnf knock-down facilitates extinction when reinforcement is available upon the acquisition of an alternative response. We used a highly reinforcing variable ratio 2 schedule, and test sessions lasted 45 min.Under these conditions, bdnf knock-down and control mice did not differ, responding on both the previously reinforced and the newly reinforced apertures to the same degree as control mice (main effect of genotype on nonreinforced responding F(1,14) = 1.9, P = 0.2; reinforced responding F < 1; group × session interaction F < 1) (Fig. 1D). In other words, PLc bdnf knock-down mice showed exaggerated response inhibition in the absence of reinforcement, but not when a competing response to obtain food reinforcement was available. Main effects of session on responses made on the active and inactive apertures indicated mice acquired the “reversal” (F(3,45) = 15.2, P < 0.001; F(3,45) = 5.7, P = 0.002, respectively).In a final behavioral experiment, male group-housed C57BL/6J mice (Charles River Laboratories, Kingston, New York), also ≥10 wk of age at the start of the experiment, were trained and infused with BDNF to evaluate whether acute PLc BDNF infusion produced the opposite effects of gene knock-down: slowed extinction. Human recombinant BDNF (Chemicon) dissolved in sterile saline in a concentration of 0.4 μg/μL (Gourley et al. 2008b) was used, with 0.2 μL/site at AP +2.0, DV −2.5, ML ±0.1 (Gourley et al. 2008a) infused over 2 min with needles left in place for 2 min after infusion.Several studies indicate BDNF has behavioral effects for several days after infusion into the striatum (Horger et al. 1999), ventral tegmental area (Lu et al. 2004), hippocampus (Shirayama et al. 2002; Gourley et al. 2008b), and prefrontal cortex (Berglind et al. 2007, 2009). Therefore, we utilized a single-infusion protocol: Food restriction resumed on day 5 after surgery, at which point mice appeared active. Testing resumed on day 7, at which point mice were subjected to three nonreinforced test sessions. bdnf knock-down mice were affected during the first and second sessions only, so this protocol would be expected to capture the window during which BDNF had effects, if any. These mice showed the typical reduction of responding across sessions (F(2,14) = 8.6, P = 0.004) (Fig. 2). It is worth noting that responding in control mice was lower than in previous experiments; this is likely due to the more limited recovery and food restriction time after surgery. Nonetheless, we found no effect of BDNF on responding (F < 1; infusion × session interaction F(2,14) = 1.4, P = 0.3).Open in a separate windowFigure 2.Effects of PLc BDNF microinfusion. Mice were initially trained to perform the nose poke response for food. Responses on the active aperture during training are shown at left. Mice were then infused with BDNF; subsequent instrumental responding during extinction was unaffected. (Inset) Adrenal glands were extracted and weighed after the last extinction session as a measure expected to be sensitive to PLc manipulations. Here, BDNF decreased gland weights (represented as the weight of both glands normalized to total body weight). Symbols represent means (+ SEM) per group, *P < 0.05.To verify a physiological response to PLc BDNF infusions (despite a lack of behavioral effect), we rapidly euthanized mice after the last session and extracted and weighed the adrenal glands, which secrete the hormone, corticosterone. Corticosterone secretion is sensitive to medial prefrontal cortex lesions (Diorio et al. 1993; Rangel et al. 2003) and noradrenergic depletion (Radley et al. 2008), and adrenal weights correlate with PLc BDNF expression levels (Gourley et al. 2008a). As expected, BDNF-infused mice had lighter adrenal glands (t(10) = 4.2, P = 0.002) (Fig. 2), indicating effects of BDNF infusion were detectable on this measure, though not on response diminution per se.Local bdnf knock-down could conceivably act in part by retarding anterograde BDNF transport to, or BDNF synthesis in, major PLc projections sites (Sobreviela et al. 1996; Altar et al. 1997; Conner et al. 1997; Kokaia et al. 1998). BDNF in those projection regions—the dorsal and ventral striatum and multiple hypothalamic subregions (Öngür and Price 2000)—as well as in the PLc itself, was therefore quantified by enzyme-linked immunosorbent assay (ELISA; Promega) in knock-down, control, and BDNF-infused mice.Brains were rapidly harvested from extinguished mice in Figures 1A and and2,2, and frozen and sliced into 1-mm-thick coronal sections. Brain regions were dissected bilaterally or with a single midline extraction by tissue punch (1.2-mm diameter). Tissue was then sonicated in lysis buffer (200 μL: 137 mM NaCl, 20 mM tris-Hcl [pH 8], 1% igepal, 10% glycerol, 1:100 Phosphatase Inhibitor Cocktails 1 and 2; Sigma) and stored at −80°C. ELISAs were conducted using 65 μL/sample/well and in accordance with manufacturer''s instructions. BDNF concentrations were normalized to each sample''s total protein concentration, as determined by Bradford colorimetric protein assay (Pierce). BDNF was analyzed by ANOVA or ANOVA-on-Ranks for non-normally distributed PLc values.In the PLc, BDNF was diminished in bdnf knock-down mice as expected (H(2,18) = 0.2, P = 0.006, post-hoc Ps < 0.05), but BDNF expression in BDNF-infused mice did not differ from the control group (P > 0.05) (Fig. 3A). BDNF in the hypothalamus (F(2,19) = 2.6, P = 0.1) and nucleus accumbens (F < 1) was not affected. By contrast, dorsal (primarily dorsomedial) striatal BDNF expression differed between groups (F(2,20) = 5.4, P = 0.01), with knock-down mice expressing less BDNF than the BDNF-infused group (P = 0.01). BDNF in knock-down mice did not, however, significantly differ from control mice (P = 0.09).Open in a separate windowFigure 3.Quantification of BDNF in the PLc, dentate gyrus, and downstream projection sites. (A) BDNF was quantified in the PLc and major projection sites after viral-mediated gene knock-down or acute microinfusion. BDNF was diminished in the PLc of knock-down mice as expected. BDNF was also reduced in the dorsal striatum (dstri) of these animals, while other regions were unaffected by this manipulation. NAC refers to the nucleus accumbens. (B) To confirm the effects of acute BDNF infusion could be detected under some circumstances, tissue from mice infused with BDNF into the dentate gyrus (dentate) was also analyzed. Under these circumstances, elevated BDNF was detected in the hypothalamus. *P < 0.05 relative to control and BDNF-infused groups; §P < 0.05 relative to BDNF-infused mice; and P = 0.09 relative to control mice.For additional analyses, we conducted ELISAs on tissue from drug-naïve mice that had had a BDNF infusion of the same volume and concentration in the dorsal hippocampus, rather than PLc. As here, these animals had been subsequently tested in an instrumental conditioning task and were sacrificed 7 d after infusion (for behavioral reports, see Fig. 4 in Gourley et al. 2008b). Like the PLc, the hippocampus projects to the striatum and hypothalamus (Groenewegen et al. 1987; Kishi et al. 2000). In this instance of acute hippocampal infusion, BDNF expression was increased in hypothalamic samples (infusion × brain region interaction F(3,27) = 3.5, P = 0.03, post-hoc P = 0.009), consistent with previous findings (Sobreviela et al. 1996). Other regions were not affected (Ps > 0.6) (Fig. 3B).Taken together, these data indicate long-term distal effects of acute BDNF infusion are detectable when BDNF is infused into the dorsal hippocampus, though not necessarily PLc. Our data do not preclude the possibility, however, that acute PLc BDNF infusion has long-term consequences for BDNF-regulated intracellular signaling cascades in these downstream sites. For example, extracellular-signal regulated kinase 1/2 phosphorylation in the nucleus accumbens is enhanced by single BDNF infusions aimed at the anterior cingulate/PLc border (Berglind et al. 2007).To summarize, we provide evidence for decreased responding in instrumentally trained mice with PLc-selective bdnf knock-down tested in extinction. Recall of extinction learning did not appear to be affected, as group differences were restricted to test sessions 1 and 2. Time of instrumental training was not a factor, as mice trained to respond for food both before and after knock-down showed a characteristically rapid decline in responding when reinforcement was withheld.Testing mice in a spatial “reversal” task, in which mice learn simultaneously to inhibit responding on one operant and respond instead on a previously nonreinforced operant, eliminated differences in nonreinforced responding between groups. In other words, in the presence of positive reinforcement, knock-down mice did not show exaggerated response inhibition. This behavioral pattern is consistent with the PLc''s role in maintaining goal-directed action particularly under low-reinforcement conditions (Corbit and Balleine 2003; Gourley et al. 2008a). If PLc bdnf played a more general role in extinction learning, one would expect PLc bdnf knock-down mice to show rapid response diminution regardless of whether reinforcement was readily available or not, but our reversal experiment clearly illustrated this was not the case.BDNF ELISA indicated the gene knock-down protocol utilized here results in an ∼48% reduction in BDNF within the PLc and a modest reduction in the downstream dorsal striatum, providing direct evidence for effects of bdnf knock-down on PLc projection neurons (though local interneurons would also be expected to have been infected). Such effects on striatal BDNF expression may be selective to chronic manipulations, as our acute infusion protocol had no consequences for expression in downstream regions, despite actions on a peripheral measure (adrenal gland weight) and evidence of downstream effects after hippocampal infusion.While we report bdnf knock-down rapidly decreased responding early in extinction, we found that acute BDNF infusion had no effects. How might we reconcile these findings? First, it is possible that prefrontal BDNF overexpression must be chronic to have behavioral effects in this task. Second, supraphysiological BDNF-induced structural destabilization and neuronal remodeling (Horch et al. 1999; Horch and Katz 2002) or activation of cortical interneurons (Rutherford et al. 1998) may have counteracted any effects on extinction. Cortical interneuron activation in particular—a process thought to stabilize cortical activity to maintain homeostasis in local circuits—could conceivably negate any effects of BDNF infusion on prefrontal projection neurons (cf., Turrigiano and Nelson 2004; see also Berglind et al. 2007). Last, while single prefrontal BDNF infusions have been reported to suppress cue-induced drug-seeking behavior (Berglind et al. 2007, 2009), such effects may be more acute and/or selectively mediated by Pavlovian, rather than instrumental, processes.Traditionally, extinction research has focused on Pavlovian fear extinction, in which the infralimbic cortex, and not PLc, is considered the major regulatory site (Quirk and Mueller 2008). Our findings suggest the PLc may, however, be indirectly involved in instrumental extinction, as bdnf knock-down facilitated rapid response diminution in the absence of reinforcement, but not when a competing response was reinforced. These findings are consistent with the idea that under normal circumstances, the PLc invigorates responding by maintaining sensitivity to reinforcement previously available upon completion of a particular instrumental action (Corbit and Balleine 2003) or previously associated with a Pavlovian cue (Vidal-Gonzalez et al. 2006). Future studies will address whether PLc BDNF is indeed critical to the maintenance of action–outcome behavior, since the mechanisms of goal-directedness are not well-characterized. This is despite the possibility that their identification may aid in therapeutically facilitating goal-directed action when response extinction is an unproductive behavioral choice.  相似文献   
446.
Anti‐globalization protest is analyzed as a function of ideological opposition to social hierarchy and identification with the social movement. Demonstrators (N = 145) at the Summit of the Americas in Québec City in April 2001 completed measures of social dominance orientation (SDO), social identification with the anti‐globalization movement, and the likelihood of engaging in various protest behaviors. Results supported the hypothesis that social identification mediates the link between SDO and inclinations toward 2 forms of collective action (anti‐globalization protest and indirect protest), whereas non‐normative protest tended to be endorsed most strongly by male demonstrators. These relationships inform theoretical perspectives on politicized collective identity and the social psychology of social movement participation.  相似文献   
447.
In two studies the authors examined the accuracy of stranger ratings of daily behavior based on thin slices of natural conversations. Methodologically, the studies extend past research by using a behavioral accuracy criterion, benchmarking zero-acquaintance accuracy against target and informant accuracy, and employing a representative design that sampled contexts from targets’ daily situations. Theoretically, the studies investigate how stereotypes influence the accuracy of first impressions depending on their sample-based validity. Across both studies, after listening to five conversational snippets (2.5 min total), the ratings of strangers were as accurate as the targets’ and informants’ ratings. Further, ratings for gender-stereotypic behaviors with a kernel of truth resulted in greater initial accuracy than ratings for gender-stereotypic behaviors with no kernel of truth.  相似文献   
448.
The Psychological Record - The goal of this study was to design and evaluate fluency-based training units to help students eliminate inconcision. Participants first completed a 1.5-hr lesson on...  相似文献   
449.
Pica is a serious challenging behavior displayed by some persons with developmental disabilities. We report the near‐elimination of automatically reinforced pica in a 7‐year‐old boy diagnosed with autism by having him practice an alternative response (discarding objects) contingent on attempted or actual pica. Intervention was implemented 6 hours per day, under naturalistic conditions in a school setting, with outcome maintained through a 4 month follow‐up phase of evaluation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
450.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号