排序方式: 共有64条查询结果,搜索用时 0 毫秒
61.
Marc H.E. de Lussanet Frank Behrendt Christian Puta Tobias L. Schulte Markus Lappe Thomas Weiss Heiko Wagner 《Human movement science》2013
Visually presented biological motion stimuli activate regions in the brain that are also related to musculo-skeletal pain. We therefore hypothesized that chronic pain impairs the perception of visually presented actions that involve body parts that hurt. In the first experiment, chronic back pain (CLBP) patients and healthy controls judged the lifted weight from point-light biological motion displays. An actor either lifted an invisible container (5, 10, or 15 kg) from the floor, or lifted and manipulated it from the right to the left. The latter involved twisting of the lower back and would be very painful for CLBP patients. All participants recognized the displayed actions, but CLBP patients were impaired in judging the difference in handled weights, especially for the trunk rotation. The second experiment involved discrimination between forward and backward walking. Here the patients were just as good as the controls, showing that the main result of the first experiment was indeed specific to the sensory aspects of the task, and not to general impairments or attentional deficits. The results thus indicate that the judgment of sensorimotor aspects of a visually displayed movement is specifically affected by chronic low back pain. 相似文献
62.
Hecht H Bertamini M Gamer M 《Journal of experimental psychology. Human perception and performance》2005,31(5):1023-1038
It is known that naive observers have striking misconceptions about mirror reflections. In 5 experiments, this article systematically extends the findings to graphic stimuli, to interactive visual tasks, and finally to tasks involving real mirrors. The results show that the perceptual knowledge of nonexpert adults is far superior to their conceptual knowledge. Whereas conceptual errors include the assumption of left-right reversals in mirror images and often blatant extensions of the boundary of mirror space, the perceptual context prevents most such errors. However, a consistent bias to misjudge objects in mirrors too far to the outside is demonstrable in all cases including tasks with real mirrors. The authors present a 2-stage hypothesis consisting of an implicit bias of judging the mirror surface to be turned toward the observer's line of sight followed by a normalization that becomes explicit. 相似文献
63.
We present a computational model of grasping of non-fixated (extrafoveal) target objects which is implemented on a robot setup, consisting of a robot arm with cameras and gripper. This model is based on the premotor theory of attention (Rizzolatti et al., 1994) which states that spatial attention is a consequence of the preparation of goal-directed, spatially coded movements (especially saccadic eye movements). In our model, we add the hypothesis that saccade planning is accompanied by the prediction of the retinal images after the saccade. The foveal region of these predicted images can be used to determine the orientation and shape of objects at the target location of the attention shift. This information is necessary for precise grasping. Our model consists of a saccade controller for target fixation, a visual forward model for the prediction of retinal images, and an arm controller which generates arm postures for grasping. We compare the precision of the robotic model in different task conditions, among them grasping (1) towards fixated target objects using the actual retinal images, (2) towards non-fixated target objects using visual prediction, and (3) towards non-fixated target objects without visual prediction. The first and second setting result in good grasping performance, while the third setting causes considerable errors of the gripper orientation, demonstrating that visual prediction might be an important component of eye–hand coordination. Finally, based on the present study we argue that the use of robots is a valuable research methodology within psychology. 相似文献
64.
Nuno Alexandre De Sá Teixeira Heiko Hecht Ana Diaz Artiles Kimia Seyedmadani David P. Sherwood Laurence R. Young 《Quarterly journal of experimental psychology (2006)》2017,70(11):2290-2305
The remembered vanishing location of a moving target has been found to be displaced downward in the direction of gravity (representational gravity) and more so with increasing retention intervals, suggesting that the visual spatial updating recruits an internal model of gravity. Despite being consistently linked with gravity, few inquiries have been made about the role of vestibular information in these trends. Previous experiments with static tilting of observers’ bodies suggest that under conflicting cues between the idiotropic vector and vestibular signals, the dynamic drift in memory is reduced to a constant displacement along the body’s main axis. The present experiment aims to replicate and extend these outcomes while keeping the observers’ bodies unchanged in relation to physical gravity by varying the gravito-inertial acceleration using a short-radius centrifuge. Observers were shown, while accelerated to varying degrees, targets moving along several directions and were required to indicate the perceived vanishing location after a variable interval. Increases of the gravito-inertial force (up to 1.4G), orthogonal to the idiotropic vector, did not affect the direction of representational gravity, but significantly disrupted its time course. The role and functioning of an internal model of gravity for spatial perception and orientation are discussed in light of the results. 相似文献