首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   63篇
  国内免费   159篇
  2024年   1篇
  2023年   7篇
  2022年   26篇
  2021年   16篇
  2020年   23篇
  2019年   17篇
  2018年   8篇
  2017年   19篇
  2016年   20篇
  2015年   16篇
  2014年   18篇
  2013年   33篇
  2012年   42篇
  2011年   35篇
  2010年   35篇
  2009年   26篇
  2008年   42篇
  2007年   36篇
  2006年   37篇
  2005年   30篇
  2004年   15篇
  2003年   17篇
  2002年   13篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1990年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有568条查询结果,搜索用时 31 毫秒
201.
发展的认知神经科学--神经科学与认知发展研究的融合点   总被引:5,自引:0,他引:5  
徐芬  董奇 《应用心理学》2002,8(4):51-55
本文介绍了发展的神经科学自 2 0世纪 80年代以来在早期突触形成、关键期及丰富环境对脑发育的影响等领域的一些突出成就 ,阐述了从神经科学与认知发展共同研究的主题来考察两个学科的整合的意义 ,并对发展的认知神经科学研究的未来趋势作了展望。  相似文献   
202.
研究生的科研选题的意义是十分重要的,除了作为培养未来的科研人才的一条有效途径以外,研究生的科研方向代表着目前各研究领域的最基础部分,但是,由于学生自身的各种主观因素以及学校和社会的多种客观因素导致了目前的局面:只有好的愿望达不到好的目的。要推动整个社会的科技进步,需要更深入更长远对人才的培养问题进一步思考。  相似文献   
203.
Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the β-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and injections of NE alone produce amnesia. These findings suggest that abnormal neurotransmitter responses may be the basis for amnesia produced by inhibition of protein synthesis. The present experiment extends these findings to the hippocampus and adds acetylcholine (ACh) to the list of neurotransmitters affected by anisomycin. Using in vivo microdialysis at the site of injection, release of NE, DA, and ACh was measured before and after injections of anisomycin into the hippocampus. Anisomycin impaired inhibitory avoidance memory when rats were tested 48 h after training and also produced substantial increases in local release of NE, DA, and ACh. In an additional experiment, pretreatment with intrahippocampal injections of propranolol prior to anisomycin and training significantly attenuated anisomycin-induced amnesia. The disruption of neurotransmitter release patterns at the site of injection appears to contribute significantly to the mechanisms underlying amnesia produced by protein synthesis inhibitors, calling into question the dominant interpretation that the amnesia reflects loss of training-initiated protein synthesis necessary for memory formation. Instead, the findings suggest that proteins needed for memory formation are available prior to an experience, and that post-translational modifications of these proteins may be sufficient to enable the formation of new memories.A dominant view of the molecular basis for memory is that the formation of long-term memory for an experience depends on de novo protein synthesis initiated by that experience (Davis and Squire 1984; Frey and Morris 1998; Kandel 2001; Dudai 2002; Nader 2003; Alberini 2008). This view is supported by numerous studies showing that drugs that interfere with protein synthesis by inhibiting translational processes near the time of training produce later amnesia.Despite the centrality of experience-induced protein synthesis in contemporary models of memory formation, the necessity of protein synthesis for memory consolidation and long-term potentiation (LTP) stabilization has been questioned since the beginning of experiments of this type (e.g., Flexner and Goodman 1975; Barraco and Stettner 1976; Flood et al. 1978; Martinez et al. 1981), and continues to be questioned in several recent reviews (Routtenberg and Rekart 2005; Gold 2006, 2008; Radulovic and Tronson 2008; Routtenberg 2008; Rudy 2008). There are many instances of intact memories formed in the presence of extensive inhibition of protein synthesis, and a wide range of behavioral and pharmacological manipulations can rescue memory impaired by protein synthesis inhibitors. For example, amnesia is attenuated in a graded manner by increasing the training trials and foot shock intensity in avoidance tasks (Flood et al. 1975, 1978). Moreover, a wide range of stimulants, such as amphetamine, strychnine, corticosteroids, and caffeine, block amnesia induced by anisomycin (Flood et al. 1978). Like memory, LTP is sometimes insensitive to protein synthesis inhibitors. Simultaneous inhibition of both protein synthesis and degradation does not interfere with induction and maintenance of LTP (Fonseca et al. 2006a). Also, the specific schedule and frequency of test pulses after induction of LTP determine the vulnerability of LTP to anisomycin-induced impairment; anisomycin treatment does not impair LTP unless test pulses at a rate of 1/10 sec were administered during the anisomycin exposure (Fonseca et al. 2006b).Findings that memory and LTP can survive the inhibition of protein synthesis challenge the necessity of specific training- or stimulation-initiated protein synthesis for memory formation and synaptic plasticity. Several actions of protein synthesis inhibitors offer alternative accounts for amnesia produced by these drugs. These include cell sickness (Rudy et al. 2006; Rudy 2008), activation of protein kinases and superinduction of immediate early genes (Radulovic and Tronson 2008), abnormal neural electrical activity (Agnihotri et al. 2004; Xu et al. 2005), and intrusion of neural “noise” that masks the primary changes representing memory formation (Gold 2006). Neural responses to inhibition of protein synthesis such as these may impair memory either secondary to or independent of interference with protein synthesis.Another example of the mechanisms by which inhibition of protein synthesis might impair memory is by altering neurotransmitter functions. This possibility was suggested in early studies (e.g., Flexner and Goodman 1975; Quartermain et al. 1977) and has recently been supported by studies of neurotransmitter release at the site of intra-amygdala injections of anisomycin (Canal et al. 2007). In addition to impairing later memory after inhibitory avoidance training, pretraining injections of anisomycin into the amygdala produced rapid and dramatic increases in release of norepinephrine (NE), dopamine (DA), and serotonin (5-HT) at the sites of injection. The release of NE and DA then plummeted below baselines from 2 to 6 h after anisomycin injections, recovering within 48 h after anisomycin injection. The possibility that these neurochemical changes contribute to anisomycin-induced amnesia was supported by studies showing attenuation of amnesia in rats pretreated with intra-amygdala injections of the β-adrenergic receptor antagonist propranolol, apparently acting to blunt the effects of the large increases in release of NE after anisomycin injection. In addition, amnesia was produced by injections of high doses of norepinephrine into the amygdala.In addition to amnesias produced by anisomycin injections into the amygdala, as above, anisomycin also impairs memory when administered to other memory systems, including the hippocampus, where anisomycin impairs inhibitory avoidance memory (Quevedo et al. 1999; Debiec et al. 2002; Milekic et al. 2006). The present study extends the prior findings (Canal et al. 2007) in several respects. Experiments presented here determine whether anisomycin injections into the hippocampus result in changes in release of the catecholamines, NE and DA, at the site of injection, as seen previously in the amygdala. Additionally, the present experiments determine whether intrahippocampal injections of anisomycin result in increased release of acetylcholine, a neurotransmitter not examined in the previous study. To examine parallels with earlier amygdala findings, a further experiment determines whether intrahippocampal pretreatment with propranolol is effective in attenuating anisomycin-induced amnesia.  相似文献   
204.
Odor preference learning in the neonate rat follows pairing of odor input and noradrenergic activation of β-adrenoceptors. Odor learning is hypothesized to be supported by enhanced mitral cell activation. Here a mechanism for enhanced mitral cell signaling is described. Theta bursts in the olfactory nerve (ON) produce long-term potentiation (LTP) of glomerular excitatory postsynaptic potentials (EPSPs) and of excitatory postsynaptic currents (EPSCs) in the periglomerular (PG) and external tufted (ET) cells. Theta bursts paired with β-adrenoceptor activation significantly elevate mitral cell (MC) calcium. Juxtaglomerular inhibitory network depression by β-adrenoceptor activation appears to increase calcium in MCs in response to theta burst stimulation.Early odor preference learning provides us with a model in which the necessary and sufficient inputs for learning can be localized to a relatively simple cortical structure, the olfactory bulb (Sullivan et al. 2000). The critical changes for this natural form of learning occur in the olfactory bulb network (Coopersmith and Leon 1986, 1987, 1995; Wilson et al. 1987; Woo et al. 1987; Wilson and Leon 1988; Wilson and Leon 1991; Guthrie et al. 1993; Johnson et al. 1995; Yuan et al. 2002). Odor preference learning is induced by the pairing of odor with activation of the locus coeruleus noradrenergic system, a component of our arousal circuitry (Harley 1987; Berridge and Waterhouse 2003; Berridge 2008), which is critically involved in other forms of memory (Harley 1987; Berridge and Waterhouse 2003) and compromised in diseases of memory, such as Alzheimer''s (Palmer and DeKosky 1993; Weinshenker 2008). The unconditioned stimulus for early odor preference learning is mediated by β-adrenoceptor activation in the olfactory bulb (Sullivan et al. 1991, 1992; Wilson and Sullivan 1991, 1994; Wilson et al. 1994; Harley et al. 2006). β-Adrenoceptor agonists and antagonists infused in the olfactory bulb can induce or block learning, respectively (Sullivan et al. 1989, 2000).Despite the fact that the behavioral model for early odor preference learning has been established for decades (Sullivan et al. 1988, 1989), and despite the fact that the olfactory bulb circuit contains synapses that are essential for the formation of a localizable long-term memory that is easily indexed in behavior (Coopersmith and Leon 1986; Wilson et al. 1987; Woo et al. 1987; Wilson and Leon 1988; Woo and Leon 1991; Johnson et al. 1995; McLean et al. 1999; Yuan et al. 2002), the circuitry and the synapses in the olfactory bulb that mediate learning are not well understood. Long-term potentiation (LTP), the putative synaptic model for associative learning in other brain regions (Bliss and Lomo 1973; Brown et al. 1988; Barnes 1995; Malenka 1994), has not been demonstrated compellingly in the rat olfactory bulb. The lack of evidence for a synaptic locus and a mechanism to support odor preference learning is partly due to the dissociation of the neural changes previously observed following early odor learning (seen at the glomerular input level) (Coopersmith and Leon 1986; Wilson et al. 1987; Woo et al. 1987; Wilson and Leon 1988; Woo and Leon 1991; Johnson et al. 1995; Yuan et al. 2002) and the innervation pattern of noradrenergic fibers in the olfactory bulb (seen mostly in the deep layers of the olfactory bulb, but sparse in the glomerular layer) (McLean et al. 1989; McLean and Shipley 1991).McLean and colleagues have proposed, based on physiological and anatomical evidence, that early odor preference learning leads to a long-term facilitation of the olfactory nerve (ON) inputs to mitral cells (MCs, the main output cell of the olfactory bulb) (McLean et al. 1999; Yuan et al. 2003b; McLean and Harley 2004). In the present study, odor input is mimicked in vitro by theta burst stimulation (TBS) of the ON, and the modulation of glomerular and MC responses to theta bursts alone and in conjunction with bath application of the β-adrenoceptor agonist, isoproterenol, is assessed. The results support the McLean glomerular/MC hypothesis of early odor preference learning.In the first set of experiments (Fig. 1A–D), the effects of theta burst ON input on the field glomerular excitatory postsynaptic potential (EPSP) were tested. The ON was stimulated by a single test stimulus (20–100 μA) every 20 sec in horizontal olfactory bulb slices from postnatal 6–14-d-old Sprague–Dawley rats (Fig. 1A). TBS (10 bursts of high frequency stimulation at 5 Hz, each burst containing five pulses at 100 Hz, same stimulation intensity as test stimuli) that mimics the sniffing cycles in the ON (Kepecs et al. 2006) was given after a baseline was taken. All the experiments were done in aCSF containing (in millimolars) 119 NaCl, 2.5 KCl, 1.3 MgSO4, 1 NaH2PO4, 26.2 NaHCO3, 22 mM glucose, and 2.5 CaCl2, equilibrated with 95% O2/5% CO2. Field recording pipettes were filled with aCSF. All recordings were acquired at 30°C–32°C. Data are presented as mean ± SEM. Student''s t-test was used to determine statistical significance.Open in a separate windowFigure 1.Theta LTP can be induced in the olfactory bulb first synapses. (A) Stimulation and recording configuration. A bipolar stimulation pipette was placed on a bundle of ON fibers that innervated the recorded glomerulus. ON, olfactory nerve; GL, glomerular layer; MC, mitral cell. (B–D) LTP of glomerular field EPSPs induced by ON theta burst stimulation (TBS). (B) Time course of glomerular field EPSPs (upper: single example; lower: average traces from N = 34 recordings). Note field EPSP was potentiated following TBS. (C) Paired-pulse ratio (PPR, N = 7) of ON field EPSPs (interval 50 msec) was depressed following TBS. (D) LTP of glomerular field EPSPs was D-APV independent (N = 5). (E–G) TBS of ON induced LTP in postsynaptic external tufted (ET) cells. (E) Time course of EPSCs recorded from ET cells (N = 6). (F) PPR of EPSCs (N = 4). (G) LTP of ET cell EPSCs are D-APV independent (N = 3). (H,I) TBS of ON induced potentiation of periglomerular (PG) cell EPSCs. (H) Time course of EPSCs (N = 8). (I) PPR of EPSCs (N = 4).There was on average a 14.5 ± 2.5% increase in the field EPSP peak amplitude at 30 min post TBS induction (N = 34, t = 5.82, P < 0.001, Fig. 1B). Bath application of D-APV (50 μM), an NMDAR antagonist, did not eliminate TBS potentiation; the EPSP peak is 115.6 ± 5.4% of baseline, 30 min post-induction (N = 5, t = 2.90, P = 0.022, Fig. 1D). This result suggests that plasticity occurs at the first step of odor processing (Ennis et al. 1998; Mutoh et al. 2005; Tyler et al. 2007; Dong et al. 2008; Jones et al. 2008). Hence, the synapses between the ON and its postsynaptic neurons are potential targets for learning-dependent plasticity as suggested by the long-lasting metabolic and anatomical changes observed at the olfactory bulb glomerular level following early odor preference training (Coopersmith and Leon 1986; Wilson et al. 1987; Woo et al. 1987; Wilson and Leon 1988; Woo and Leon 1991; Johnson et al. 1995; Yuan et al. 2002). Paired stimuli given to the ON using a 50-msec interval were used to test presynaptic changes to TBS. Paired-pulse ratios, an indicator of changes in presynaptic release (Murphy et al. 2004), decreased following TBS (91.5 ± 2.8% of control, N = 7, t = 3.05, P = 0.011, Fig. 1C). The decrease in paired-pulse ratio suggests TBS potentiation is presynaptically mediated. The glomerular potentiation seen here is consistent with a recent adult mouse model showing an increase in odor-specific glomeruli and olfactory sensory neurons following odor learning (Jones et al. 2008).In the second set of experiments, glomerular excitatory postsynaptic currents (EPSCs) in postsynaptic juxtaglomerular (JG) cells were recorded in voltage-clamp mode (membrane potential held at −60 mV). The effects of TBS on JG cell EPSCs were tested. Patch pipettes were filled with an internal solution containing (in millimolars) 114 K-gluconate, 17.5 KCl, 4 NaCl, 4 MgCl2, 10 HEPES, 0.2 EGTA, 3 Mg2ATP, and 0.3 Na2GTP. There are two main populations of JG cells in the glomeruli, periglomerular (PG) cells, and external tufted (ET) cells. PG cells are inhibitory on MCs (Murphy et al. 2005), while ET cells are excitatory neurons, which receive monosynaptic ON input and then excite PG interneurons (Hayar et al. 2004). PG cells form two functionally distinct populations: ∼30% are driven by monosynaptic ON input, while the remaining population receive their input mainly through ET cells (ON–ET–PG circuit) (Shao et al. 2009). These JG cells form a glomerular inhibitory network in which inhibitory PG cells (activated by either ON input or ET cells) provide both feed-forward and feedback inhibition to MCs of the olfactory bulb through dendrodendritic synapses (Hayar et al. 2004; Murphy et al. 2005). ET cells can be distinguished from PG cells by their morphology, location, and characteristic spontaneous rhythmic spike bursting pattern recorded extracellularly before switching to whole-cell voltage-clamp mode (Hayar et al. 2004; Dong et al. 2007). ET cells were significantly potentiated by TBS while the TBS effect on PG cells was more moderate and more variable (ET: 124.1 ± 11.4% of control at 30 min post-induction, N = 6, t = 2.12, P = 0.043, Fig. 1E; PG: 115.7 ± 15.5%, N = 8, t = 1.01, P = 0.172, Fig. 1H). It should be noted that there is a stronger dialysis effect in small cells, such as the PG cells, which is suggested to account for the weaker and more variable potentiation in this subgroup. Three PG cells showed compelling potentiation (164 ± 13.5% of control at 30 min post-induction, t = 4.73, P = 0.021). The paired-pulse ratio of the EPSCs was reduced following TBS induction (ET: 81.6 ± 4.6% of control, N = 4, t = 4.01, P = 0.014, Fig. 1F; PG: 80.1 ± 10.5%, t = 1.90, P = 0.070, Fig. 1I), consistent with a presynaptic expression mechanism. Furthermore, ET cell LTP was NMDA-receptor independent when tested with APV (161.9 ± 23.3% of control, 15 min post-induction, N = 3, t = 2.66, P = 0.028, Fig. 1G).The role of theta LTP in learning is of particular interest because this pattern of activation is likely to occur in the ON. Since theta is the frequency associated with sniffing in the olfactory bulb (Kepecs et al. 2006), it is straightforward to hypothesize that it has a role in the learning of odor associations. Yet odor preference learning does not occur with odor exposure per se. An interaction between a theta paced odor input and the arousal modulator, norepinephrine (NE), is critical.In the third set of experiments, calcium imaging was used to examine the network of MC responses in each slice. Conventionally, it has been assumed that the glomerular field EPSP mostly reflects MC activity (Mori 1987; Shipley et al. 1996). But recent studies demonstrate the contribution of other cell types to the glomerular field EPSP such as the JG cells (ET and PG cells) (Karnup et al. 2006) monitored here. Therefore, the glomerular field EPSP is not a simple summation of synchronized MC activity. Moreover, synaptic activities at MC dendritic tufts in glomeruli may not propagate efficiently enough to the soma to change MC spiking rate due to the significant length of MC apical dendrites (Karnup et al. 2006). Therefore, this set of experiments used direct monitoring of MC activity through calcium imaging to characterize activity-dependent changes in the olfactory bulb output map. Calcium imaging permits the examination of a large population of neurons with single-cell resolution (Egger 2007).A calcium indicator dye, Oregon Green BAPTA-1, was pressure-injected into the MC layer to stain populations of MCs (Fig. 2A,B). Calcium transients were imaged at 494 nm excitation (15–20 Hz, 2 × 2 binning). Regions of interest (∼20 μm diameter) centered over MC somata were used for kinetic analysis. By selecting 8–12 cells per slice (including both strongly and weakly activated cells), and measuring single MC somatic calcium transients (ΔF/F, average over six to eight trials, background subtracted from an immediate adjacent area next to the somata), changes were observed in the MC responses to ON stimulation (40–100 μA) 30 min following TBS (the same time point at which the magnitude of theta LTP in the glomerular layer was measured). The overall MC calcium responses to ON stimulation were not significantly affected by TBS (113.0 ± 10.5% of control, N = 74 cells from nine slices, t = 1.24, P = 0.220, Fig. 2 panel C1). The olfactory bulb network is, as noted, functionally complex with both feed-forward and feedback inhibition modifying the MC responses to ON/odor stimulation (Murphy et al. 2005). Given the increase in coupling to inhibitory interneurons seen in the second set of experiments, it may be that enhanced feed-forward inhibition from the inhibitory JG network prevented an increase in MC responding. However, it should be noted that increases in MC responses related to TBS could be masked due to the limitation of the in vitro methodology (e.g., selected cells may include those projecting to glomeruli further away from the stimulation site and those deeper in the tissue which have weaker signal-to-noise ratios). However, as subsequent experiments, described below, reveal significant MC calcium responses with the same in vitro methodology, it is likely that the response to TBS alone is relatively minor.Open in a separate windowFigure 2.Pairing of TBS and isoproterenol (ISO) increased MC calcium responses. (A) ΔF/F calcium image (20× objective) of a slice stained with a calcium indicator dye, Oregon Green BAPTA-1 AM. The MC layer is labeled by white dashed lines. Scale bar, 50 μm. (B) An example of ΔF/F calcium imaging showing enhanced calcium responses following TBS+ISO in one MC (white asterisk). Lower traces are calcium transients recorded from the soma of the MC. (C) Averaged calcium transient changes in MCs following TBS, ISO, and TBS+ISO (normalized to control), measured at 30 min post-manipulations. **P < 0.01. (C1) Single-cell calcium transient changes before and after TBS. Dashed black line indicates no change. Cells above the dashed line show increased calcium responses, whereas those below the dashed line show decreased calcium responses. (C2) MC calcium responses to paired TBS and ISO. Note that the majority of MCs showed increased calcium responses following TBS+ISO. (C3) MC calcium responses to ISO only.Since TBS itself was not sufficient to produce significant MC calcium responses, the combined effect of TBS and the β-adrenoceptor agonist, isoproterenol, were examined. Isoproterenol was applied to the bath solution 5–10 min before the TBS and washed out after the TBS induction. The pairing of TBS and isoproterenol (10 μM) increased MC calcium responses in most of the cells measured (137.0 ± 11.0% of control, N = 55 from five slices, t = 3.27, P < 0.001, Fig. 2 panel C2). Five to ten min application of isoproterenol alone to the bath solution did not alter the MC responses observed 30 min after isoproterenol washout (102.5 ± 8.8% of control, N = 47 from four slices, t = 0.28, P = 0.781, Fig. 2 panel C3). Thus, the potentiated MC calcium response was only seen with paired isoproterenol and TBS. As a caveat it should be noted that MCs fire action potentials spontaneously in vivo at ∼3 Hz (Cang and Isaacson 2003) and in vitro at ∼15 Hz (up to 75 Hz) (Griff et al. 2008). A change in ΔF/F calcium response reflects a change in the ratio of the evoked response over the baseline spontaneous response. Changes in MC spontaneous firing, therefore, can affect the ΔF/F calcium signal measured from the MC. However, if pairing TBS with isoproterenol increased spontaneous firing, the increase in the evoked firing rate of MCs had to occur to a greater degree.This result, that only the pairing of TBS with isoproterenol enhanced MC calcium responses, correlates with the behavioral studies (Langdon et al. 1997; Sullivan and Leon 1987; Sullivan et al. 2000) showing that only the pairing of an odor and isoproterenol produces associative learning, while either odor alone or isoproterenol alone does not lead to associative learning. It supports the view that at the level of physiological mechanism, classical conditioning is the interaction of arousal modulation and theta modulation while either alone does not create the necessary associative conditions. Consistent with previous work showing enhanced CREB phosphorylation in MCs following learning (McLean et al. 1999; Yuan et al. 2000, 2003a), the present calcium imaging results support the hypothesis that odor learning results in increased firing in odor encoding MCs. Increased firing in MCs is also consistent with recent work by Gire and Schoppa showing that the pairing of NE with TBS induces an enhancement of MC long-lasting depolarization and gamma frequency oscillation (Gire and Schoppa 2008). Interestingly, MC firing is mainly suppressed to a familiar odor in neonatal rats (Wilson et al. 1985). TBS potentiation of the inhibitory JG circuitry may contribute to the odor habituation observed behaviorally.In the fourth set of experiments, the effects of isoproterenol on JG cell activity were examined. Previous research using slice physiology to identify a synaptic site of NE action was constrained by the known distribution of noradrenergic input to the olfactory bulb. Noradrenergic fibers project heavily to the subglomerular layers; they terminate densely in the internal plexiform and the granule cell (GC) layers, and moderately in the external plexiform and the MC layers (McLean et al. 1989). Based on this anatomical evidence, it was assumed that either GCs or MCs were the potential targets for β-adrenoceptor action. However, the Ennis group showed that the β-adrenoceptor agonist isoproterenol has no direct effect on MC excitability in acute rat olfactory bulb slices (Hayar et al. 2001). Although isoproterenol caused an inward current in MCs in voltage-clamp mode, this inward current was blocked by synaptic transmission blockers, suggesting an indirect effect of isoproterenol, possibly through interneurons. NE could disinhibit MCs through suppressing GC activity as reported in the turtle and dissociated rat olfactory bulb cultures (Jahr and Nicoll 1982; Trombley and Shepherd 1992; Trombley 1994). However, this effect was attributed to an α2-, but not β-adrenoceptor, mediated presynaptic inhibition of GC and/or MC dendrites (Trombley 1992, 1994; Trombley and Shepherd 1992). Since isoproterenol here altered MC calcium responses to ON theta burst input, it was possible that JG cells were potential targets for NE action. Studies using immunocytochemistry (Yuan et al. 2003b) and receptor autoradiography (Woo and Leon 1995) show that β-adrenoceptors are expressed in JG cells (Woo and Leon 1995; Yuan et al. 2003b), as well as in MCs (Yuan et al. 2003b) and GCs (Woo and Leon 1995).With the application of isoproterenol the JG cell EPSCs to ON stimulation were suppressed (ET: 86.6 ± 6.0% of control, N = 6, t = 2.25, P = 0.037, Fig. 3A; PG: 87.3 ± 3.6%, t = 3.55, P = 0.006, Fig. 3A). Isoproterenol was applied for 5 min in the bath solution and then washed out. The effect of isoproterenol was reversed after washout (94.8 ± 6.7%, N = 3, t = 0.78, P = 0.259, Fig. 3A). Similar results were found with calcium imaging using the averaged cell calcium transients from 8–20 cells per slice (Fig. 3B). The averaged response from each slice was counted as one experiment. JG cell calcium transients were suppressed in the presence of isoproterenol (83.7 ± 3.0% of control, N = 7, t = 5.40, P = 0.002, Fig. 3B). The effect of isoproterenol was reversed 30 min following washout (100.6 ± 1.8% of control, N = 3, t = 0.36, P = 0.754). In two experiments, recordings were made from slices that had a cut between the MC and the glomerular layer to isolate the potential secondary effect from MCs onto JG cells. In this case, isoproterenol still suppressed JG cell calcium transients (Fig. 3B, dashed circles).Open in a separate windowFigure 3.The effects of ISO on JG cells (PG+ET cells). (A) ISO (10 μM) application suppressed EPSCs of ET cells (N = 6) and PG cells (N = 7), which was reversed following ISO washout (N = 3). *P < 0.05, **P < 0.01. (B) ISO application suppressed ON-evoked calcium transients in JG cells (N = 7 slices). The ISO effect was reversed 30 min after washout (N = 3). N = 2 experiments were recorded from slices of a cut that was made between the glomerular layer and the MCs layer. **P < 0.01Given the results of both whole-cell recording and calcium imaging, it was reasonable to hypothesize that isoproterenol would decrease JG cell activity, reducing GABA release onto MCs and causing MC disinhibition. Indeed, it has been shown NE application caused a reduction of inhibitory postsynaptic currents (IPSCs) in MCs (Gire and Schoppa 2008). Taken together these findings support the enhanced MC excitation model for early odor preference learning. While the present experiments were conducted with the β1/2 agonist, isoproterenol, associative odor preference learning depends on β1, not β2, receptors (Harley et al. 2006). β1 adrenoceptors are also expressed in JG cells (Yuan et al. 2003b). The role of specific β-adrenoceptor subtypes in mediating MC disinhibition will be tested in the future studies.The present results argue that potentiation of MC calcium responses occurs only when theta frequency activity is paired with β-adrenoceptor activation. They also suggest that one critical role of NE activation via β-adrenoceptors in the olfactory bulb is to suppress the inhibitory JG network, subsequently transiently disinhibiting MCs and providing the conditions for strengthening ON–MC connections in selected glomeruli. This mechanism likely operates in concert with changes promoted by patterned cAMP waves in MCs (Cui et al. 2007).  相似文献   
205.
Amyloid β-protein (Aβ) in the brain of Alzheimer’s disease (AD) plays a detrimental role in synaptic plasticity and cognitive function. The effects of Aβ on the early-phase long-term potentiation (E-LTP) have been reported widely. However, whether the late-phase long-term potentiation (L-LTP), which differs from E-LTP mechanistically, is also affected by Aβ is still an open question. The present study examined the effects of intracerebraventricular injection of Aβ fragments 25–35 and 31–35 on the L-LTP in the CA1 area of rat hippocampus in vivo, and further investigated its possible underlying mechanism. Our results showed that: (1) Aβ25–35 (6.25–25 nmol) did not affect the baseline field excitatory postsynaptic potentials, but dose-dependently suppressed multiple high-frequency stimuli-induced L-LTP; (2) Aβ31–35, a shorter Aβ fragment than Aβ25–35, also significantly suppressed L-LTP, with the same suppressive effects as Aβ25–35; (3) pretreatment with PMA (6 nmol/5 μl), a membrane permeable PKC agonist, effectively prevented Aβ31–35-induced deficits in the early and the late components of L-LTP; (4) co-application of Aβ31–35 and chelerythrine (12 nmol/5 μl), a PKC antagonist, caused no additive suppression of L-LTP. These results indicate that both Aβ25–35 and Aβ31–35 can impair hippocampal synaptic plasticity in vivo by suppressing the maintenance of L-LTP, and PKC probably mediates the Aβ-induced suppression of hippocampal L-LTP. In addition, the similar efficacy of Aβ31–35 and Aβ25–35 in L-LTP suppression supports the hypothesis we suggested previously that the sequence 31–35 in Aβ might be the shortest active sequence responsible for the neuronal toxicity induced by full length of Aβ molecules.  相似文献   
206.
A number of studies have concluded that dreaming is mostly caused by random signals because “dream contents are random impulses”, and argued that dream sleep is unlikely to play an important part in our intellectual capacity. On the other hand, numerous functional studies have suggested that dream sleep does play an important role in our learning and other intellectual functions. Specifically, recent studies have suggested the importance of dream sleep in memory consolidation, following the findings of neural replaying of recent waking patterns in the hippocampus. This study presents a cognitive and computational model of dream process that involves episodic learning and random activation of stored experiences. This model is simulated to perform the functions of learning and memory consolidation, which are two most popular dream functions that have been proposed. The simulations demonstrate that random signals may result in learning and memory consolidation. The characteristics of the model are discussed and found in agreement with many characteristics concluded from various empirical studies.  相似文献   
207.
We recently developed a glue-based method for the implantation of intracranial electrodes in mice. Our approach is to secure a preconstructed electrode array using a cyanoacrylate-based glue (similar to Krazy Glue). This method is applicable to both young and aging mice and is suitable for long-term electroencephalographic recordings. In the present experiment, we explored whether the glue-based method is capable of securing individual electrodes in addition to securing the electrode array. C57 black mice aged 25–35 days or 13–19 months were operated on under isoflurane anesthesia. Monopolar or bipolar electrodes were inserted independently in the ipsilateral hippocampal CA3 and entorhinal cortical areas, and they were fixed onto the skull using the glue together with dental acrylic, but without anchoring screws. We found that the implanted electrodes were stable and allowed repeat intracranial recordings and electrical stimulation in freely moving mice.  相似文献   
208.
情绪加工老化效应的神经机制   总被引:3,自引:0,他引:3  
李鹤  丁妮  董奇 《心理科学进展》2009,17(2):356-361
行为学研究发现,老年人对消极情绪的辨别、注意和记忆都有所下降,而对积极情绪并未表现出类似的现象。情绪加工老化效应的神经影像学研究发现,老年人在情绪加工过程中边缘系统(尤其杏仁核)的激活强度低于年轻人,但额叶皮层区域的激活却有所增强。研究者对该结果提出了两种假说,一种是功能代偿假说,另一种是策略改变假说。功能代偿假说认为老年人额叶皮层区域的激活增强是为了弥补边缘系统功能的下降,反映了大脑功能的代偿;策略改变假说认为老年人主动使用了不同于年轻人的策略,情绪加工方式的不同导致了两组人群大脑活动的差异。未来这方面研究可以从研究层面、研究方法、研究问题等方面逐步完善  相似文献   
209.
动机理论的新发展:调节定向理论   总被引:5,自引:0,他引:5  
姚琦  乐国安 《心理科学进展》2009,17(6):1264-1273
Higgins(1997)提出的调节定向理论,独立于享乐主义原则,揭示了人们如何趋近积极目标状态和回避消极目标状态。该理论区分了两种不同的调节定向——促进定向和预防定向,两者在服务的需要类型、对目标的表征、对结果的关注点、情绪体验等方面存在区别,并会产生独立的动机结果。文章介绍了关于两种调节定向的特点、调节定向的测量、调节定向对基本心理过程和调节定向理论在社会生活的应用的研究成果,并提出未来研究应重视对调节定向的测量、调节定向与人格、与时间动力等方面的研究。  相似文献   
210.
人们会根据陌生人的面孔线索或语音线索迅速地对其人格特质进行主观推断而形成第一印象。面孔-人格知觉第一印象和语音-人格知觉第一印象在维度结构和内在机制上具有相似性;在对具体人格特质和维度的敏感性,以及具体的认知机制方面又具有各自的特异性。未来研究可以基于同一批被知觉者开展面孔-人格知觉第一印象和语音-人格知觉第一印象的直接比较,并着力探究二者的过程特点,以及人格知觉第一印象形成时面孔和语音知觉的跨模态整合效应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号