首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2020年   2篇
  2019年   1篇
  2013年   2篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
The evolution of joint dynamics and muscle patterning in the shoulder and elbow was studied for cyclical line drawing tasks at different frequencies, amplitudes, and orientations in the horizontal plane. Three main modes of control were identified: elbow-centered, shoulder-centered, and elbow-shoulder, each referring to the principal joints or joint combinations that were used to achieve the behavioral goals. The contribution of the shoulder joint was most prominent across the majority of movement orientations and largely paralleled changes in the dynamic (inertial) forces in the end effector (shoulder-centered control). The two joints either exchanged roles during the performance of the right diagonal movement (elbow-centered control) or shifted from a single-joint strategy to a dual-joint strategy during the performance of large amplitudes with low or medium cycling frequencies (shoulder-elbow control). These behavioral results support the existence of a modular control mode that allows the central nervous system to effectively tune motor commands to meet a broad variety of orientations, amplitudes, and frequencies. This refers to the emergence of a context-dependent control mode for the shoulder and elbow that optimizes the implementation of the underlying motor goals under a rich combination of spatial and temporal manipulations.  相似文献   
12.
Oron Shagrir 《Synthese》2006,153(3):393-416
The view that the brain is a sort of computer has functioned as a theoretical guideline both in cognitive science and, more recently, in neuroscience. But since we can view every physical system as a computer, it has been less than clear what this view amounts to. By considering in some detail a seminal study in computational neuroscience, I first suggest that neuroscientists invoke the computational outlook to explain regularities that are formulated in terms of the information content of electrical signals. I then indicate why computational theories have explanatory force with respect to these regularities:in a nutshell, they underscore correspondence relations between formal/mathematical properties of the electrical signals and formal/mathematical properties of the represented objects. I finally link my proposal to the philosophical thesis that content plays an essential role in computational taxonomy.  相似文献   
13.
Content, Computation and Externalism   总被引:5,自引:0,他引:5  
Shagrir  Oron 《Mind》2001,110(438):369-400
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号