首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   8篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   8篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   22篇
  2012年   6篇
  2011年   13篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2004年   7篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1996年   1篇
  1995年   1篇
  1987年   1篇
  1985年   1篇
  1977年   2篇
  1972年   1篇
  1961年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
111.
Spaced learning with time to consolidate leads to more stabile memory traces. However, little is known about the neural correlates of trace stabilization, especially in humans. The present fMRI study contrasted retrieval activity of two well-learned sets of face-location associations, one learned in a massed style and tested on the day of learning (i.e., labile condition) and another learned in a spaced scheme over the course of one week (i.e., stabilized condition). Both sets of associations were retrieved equally well, but the retrieval of stabilized association was faster and accompanied by large-scale changes in the network supporting retrieval. Cued recall of stabilized as compared with labile associations was accompanied by increased activity in the precuneus, the ventromedial prefrontal cortex, the bilateral temporal pole, and left temporo–parietal junction. Conversely, memory representational areas such as the fusiform gyrus for faces and the posterior parietal cortex for locations did not change their activity with stabilization. The changes in activation in the precuneus, which also showed increased connectivity with the fusiform area, are likely to be related to the spatial nature of our task. The activation increase in the ventromedial prefrontal cortex, on the other hand, might reflect a general function in stabilized memory retrieval. This area might succeed the hippocampus in linking distributed neocortical representations.  相似文献   
112.
Our aim was to explore whether a multi‐feature paradigm (Optimum‐1) for eliciting mismatch negativity (MMN) would objectively capture difficulties in perceiving small sound contrasts in children with hearing impairment (HI) listening through their hearing aids (HAs) and/or cochlear implants (CIs). Children aged 5–7 years with HAs, CIs and children with normal hearing (NH) were tested in a free‐field setting using a multi‐feature paradigm with deviations in pitch, intensity, gap, duration, and location. There were significant mismatch responses across all subjects that were positive (p‐MMR) for the gap and pitch deviants (F(1,43) = 5.17, p = 0.028 and F(1,43) = 6.56, p = 0.014, respectively) and negative (MMN) for the duration deviant (F(1,43) = 4.74, p = 0.035). Only the intensity deviant showed a significant group interaction with MMN in the HA group and p‐MMR in the CI group (F(2,43) = 3.40, p = 0.043). The p‐MMR correlated negatively with age, with the strongest correlation in the NH subjects. In the CI group, the late discriminative negativity (LDN) was replaced by a late positivity with a significant group interaction for the location deviant. Children with severe HI can be assessed through their hearing device with a fast multi‐feature paradigm. For further studies a multi‐feature paradigm including more complex speech sounds may better capture variation in auditory processing in these children.  相似文献   
113.
How can we grasp the temporal structure of events? A few studies have indicated that representations of temporal structure are acquired when there is an intention to learn, but not when learning is incidental. Response-to-stimulus intervals, uncorrelated temporal structures, unpredictable ordinal information, and lack of metrical organization have been pointed out as key obstacles to incidental temporal learning, but the literature includes piecemeal demonstrations of learning under all these circumstances. We suggest that the unacknowledged effects of ordinal load may help reconcile these conflicting findings, ordinal load referring to the cost of identifying the sequence of events (e.g., tones, locations) where a temporal pattern is embedded. In a first experiment, we manipulated ordinal load into simple and complex levels. Participants learned ordinal-simple sequences, despite their uncorrelated temporal structure and lack of metrical organization. They did not learn ordinal-complex sequences, even though there were no response-to-stimulus intervals nor unpredictable ordinal information. In a second experiment, we probed learning of ordinal-complex sequences with strong metrical organization, and again there was no learning. We conclude that ordinal load is a key obstacle to incidental temporal learning. Further analyses showed that the effect of ordinal load is to mask the expression of temporal knowledge, rather than to prevent learning.  相似文献   
114.
The suitability of the artificial grammar learning (AGL) paradigm to capture relevant aspects of the acquisition of linguistic structures has been empirically tested in a number of EEG studies. Some have shown a syntax‐related P600 component, but it has not been ruled out that the AGL P600 effect is a response to surface features (e.g., subsequence familiarity) rather than the underlying syntax structure. Therefore, in this study, we controlled for the surface characteristics of the test sequences (associative chunk strength) and recorded the EEG before (baseline preference classification) and after (preference and grammaticality classification) exposure to a grammar. After exposure, a typical, centroparietal P600 effect was elicited by grammatical violations and not by unfamiliar subsequences, suggesting that the AGL P600 effect signals a response to structural irregularities. Moreover, preference and grammaticality classification showed a qualitatively similar ERP profile, strengthening the idea that the implicit structural mere‐exposure paradigm in combination with preference classification is a suitable alternative to the traditional grammaticality classification test.  相似文献   
115.
116.
Rapid response to danger holds an evolutionary advantage. In this positron emission tomography study, phobics were exposed to masked visual stimuli with timings that either allowed awareness or not of either phobic, fear-relevant (e.g., spiders to snake phobics), or neutral images. When the timing did not permit awareness, the amygdala responded to both phobic and fear-relevant stimuli. With time for more elaborate processing, phobic stimuli resulted in an addition of an affective processing network to the amygdala activity, whereas no activity was found in response to fear-relevant stimuli. Also, right prefrontal areas appeared deactivated, comparing aware phobic and fear-relevant conditions. Thus, a shift from top-down control to an affectively driven system optimized for speed was observed in phobic relative to fear-relevant aware processing.  相似文献   
117.
118.
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号