排序方式: 共有22条查询结果,搜索用时 15 毫秒
21.
Robert C. MacCallum 《Psychometrika》1979,44(1):69-74
A Monte Carlo study was carried out in order to investigate the ability of ALSCAL to recover true structure inherent in simulated proximity measures when portions of the data are missing. All sets of simulated proximity measures were based on 30 stimuli and three dimensions, and selection of missing elements was done randomly. Properties of the simulated data varied according to (a) the number of individuals, (b) the level of random error, (c) the proportion of missing data, and (d) whether the same entries or different entries were deleted for each individual. Results showed that very accurate recovery of true distances, stimulus coordinates, and weight vectors could be achieved with as much as 60% missing data as long as sample size was sufficiently large and the level of random error was low. 相似文献
22.
In applications of SEM, investigators obtain and interpret parameter estimates that are computed so as to produce optimal model fit in the sense that the obtained model fit would deteriorate to some degree if any of those estimates were changed. This property raises a question: to what extent would model fit deteriorate if parameter estimates were changed? And which parameters have the greatest influence on model fit? This is the idea of parameter influence. The present paper will cover two approaches to quantifying parameter influence. Both are based on the principle of likelihood displacement (LD), which quantifies influence as the discrepancy between the likelihood under the original model and the likelihood under the model in which a minor perturbation is imposed (Cook, 1986). One existing approach for quantifying parameter influence is a vector approach (Lee &; Wang, 1996) that determines a vector in the parameter space such that altering parameter values simultaneously in this direction will cause maximum change in LD. We propose a new approach, called influence mapping for single parameters, that determines the change in model fit under perturbation of a single parameter holding other parameter estimates constant. An influential parameter is defined as one that produces large change in model fit under minor perturbation. Figure 1 illustrates results from this procedure for three different parameters in an empirical application. Flatter curves represent less influential parameters. Practical implications of the results are discussed. The relationship with statistical power in structural equation models is also discussed.