首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   15篇
  国内免费   3篇
  235篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   6篇
  2016年   13篇
  2015年   5篇
  2014年   9篇
  2013年   14篇
  2012年   13篇
  2011年   17篇
  2010年   10篇
  2009年   4篇
  2008年   12篇
  2007年   10篇
  2006年   6篇
  2005年   5篇
  2004年   16篇
  2003年   5篇
  2002年   4篇
  2001年   7篇
  2000年   9篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
  1968年   2篇
排序方式: 共有235条查询结果,搜索用时 0 毫秒
231.
Understanding how learning changes during human development has been one of the long-standing objectives of developmental science. Recently, advances in computational biology have demonstrated that humans display a bias when learning to navigate novel environments through rewards and punishments: they learn more from outcomes that confirm their expectations than from outcomes that disconfirm them. Here, we ask whether confirmatory learning is stable across development, or whether it might be attenuated in developmental stages in which exploration is beneficial, such as in adolescence. In a reinforcement learning (RL) task, 77 participants aged 11–32 years (four men, mean age = 16.26) attempted to maximize monetary rewards by repeatedly sampling different pairs of novel options, which varied in their reward/punishment probabilities. Mixed-effect models showed an age-related increase in accuracy as long as learning contingencies remained stable across trials, but less so when they reversed halfway through the trials. Age was also associated with a greater tendency to stay with an option that had just delivered a reward, more than to switch away from an option that had just delivered a punishment. At the computational level, a confirmation model provided increasingly better fit with age. This model showed that age differences are captured by decreases in noise or exploration, rather than in the magnitude of the confirmation bias. These findings provide new insights into how learning changes during development and could help better tailor learning environments to people of different ages.

Research Highlights

  • Reinforcement learning shows age-related improvement during adolescence, but more in stable learning environments compared with volatile learning environments.
  • People tend to stay with an option after a win more than they shift from an option after a loss, and this asymmetry increases with age during adolescence.
  • Computationally, these changes are captured by a developing confirmatory learning style, in which people learn more from outcomes that confirm rather than disconfirm their choices.
  • Age-related differences in confirmatory learning are explained by decreases in stochasticity, rather than changes in the magnitude of the confirmation bias.
  相似文献   
232.
233.
234.
235.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号