首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   1篇
  2023年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   9篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   7篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1979年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
51.
The authors investigated the time course of reprogramming of the temporal dimension of motor acts in a task requiring interception of a moving target. The target moved at a constant velocity on a monitor screen; in part of the trials, target velocity was unexpectedly increased or decreased. Those modifications were produced at different moments during target displacement, leaving periods of time from 100 to 800 ms for movement timing correction. The authors assessed the effects of probability of target velocity change (25% vs. 50%), uncertainty about direction of velocity change (unidirectional vs. bidirectional), and direction of velocity change (increase vs. decrease). Analysis of 24 participants' arm acceleration showed that fast adjustments took place between 100 and 200 ms after target velocity change similarly for all uncertainty conditions. Analysis of temporal error indicated that the combination of high probability of target velocity change and certainty on direction of target velocity change led to the most successful movement timing reprogramming. For the other experimental conditions, temporal accuracy was still poor when a period of 800 ms was available for correction. Movement reprogramming was a continuous process that was more efficient for target velocity increase than for target velocity decrease.  相似文献   
52.
Anchoring strategies for learning a bimanual coordination pattern   总被引:1,自引:0,他引:1  
Anchoring has been defined as synchronizing a point in a movement cycle with an external stimulus (W. D. Byblow, R. G. Carson, & D. Goodman, 1994). Previously, investigators have examined anchoring during in-phase and antiphase movements. The present authors examined anchoring during acquisition of a novel bimanual coordination pattern. Participants performed a 90 degrees pattern at 1 Hz, with a 2- or 4-Hz metronome. No group differences were found in pattern performance; however, the 4-Hz group developed more consistent anchoring relative to the metronome. Mechanical anchor-point variability differed by hand, position (midpoint vs. endpoint), and direction (flexion vs. extension) but not by metronome frequency. Those results support and extend previous findings but leave unanswered questions regarding the benefits and effectiveness of anchoring during a 90 degrees pattern.  相似文献   
53.
In 1899, R. S. Woodworth published a seminal monograph, "The Accuracy of Voluntary Movement." As well as making a number of important empirical contributions, Woodworth presented a model of speed-accuracy relations in the control of upper limb movements. The model has come to be known as the two-component model because the control of speeded limb movements was hypothesized to entail both a central and a feedback-based component. Woodworth's (1899) ideas about the control of rapid aiming movements are evaluated in the context of current empirical and theoretical contributions.  相似文献   
54.
This study was designed to examine the contribution of the right cerebral hemisphere in the spatial localization of visual targets for manual aiming. Visual targets were briefly presented to the right and left fields and subjects were required to point either to the target location, or a "mirror" image of the target location with their right or left index finger. Whereas reaction times were faster for left-hand pointing than for right-hand pointing, there was no differential effect of the mirror image transformation. This suggests that left-hand reaction time advantages are more related to right hemisphere involvement in the spatial parameterization of the movement than spatial localization of the target.  相似文献   
55.
People are often seen as social creatures and, consequently, solitary behaviors are often cast in a negative light. However, the authors hypothesized that the act of spending time alone is not necessarily related to negative outcomes; rather, individuals' motivation for doing so plays a key role. On the basis of self-determination theory (E. L Deci & R. M. Ryan, 2000; R. M. Ryan & E. L. Deci, 2000), the authors predicted and found that when individuals spend time alone in a volitional and autonomous manner, they counterintuitively report lower levels of loneliness and higher levels of well-being.  相似文献   
56.
Anchoring in cyclical movements has been defined as regions of reduced spatial or temporal variability [Beek, P. J. (1989). Juggling dynamics. PhD thesis. Amsterdam: Free University Press] that are typically found at movement reversal points. For in-phase and anti-phase movements, synchronizing reversal points with a metronome pulse has resulted in decreased anchor point variability and increased pattern stability [Byblow, W. D., Carson, R. G., & Goodman, D. (1994). Expressions of asymmetries and anchoring in bimanual coordination. Human Movement Science, 13, 3-28; Fink, P. W., Foo, P., Jirsa, V. K., & Kelso, J. A. S. (2000). Local and global stabilization of coordination by sensory information. Experimental Brain Research, 134, 9-20]. The present experiment examined anchoring during acquisition, retention, and transfer of a 90 degrees phase-offset continuous bimanual coordination pattern (whereby the right limb lags the left limb by one quarter cycle), involving horizontal flexion about the elbow. Three metronome synchronization strategies were imposed: participants either synchronized maximal flexion of the right arm (i.e., single metronome), both flexion and extension of the right arm (i.e., double metronome within-limb), or flexion of each arm (i.e., double metronome between-limb) to an auditory metronome. In contrast to simpler in-phase and anti-phase movements, synchronization of additional reversal points to the metronome did not reduce reversal point variability or increase pattern stability. Furthermore, practicing under different metronome synchronization strategies did not appear to have a significant effect on the rate of acquisition of the pattern.  相似文献   
57.
Research suggests that the reaching hand automatically deviates toward a target that changes location (jumps) during the reach. In the current study, we investigated whether movement intention can influence the target jump’s impact on the hand. We compared the degree of trajectory deviation to a jumped target under three instruction conditions: (1) GO, in which participants were told to go to the target if it jumped, (2) STOP, in which participants were told to immediately stop their movement if the target jumped, and (3) IGNORE, in which participants were told to ignore the target if it jumped and to continue to its initial location. We observed a reduced response to the jump in the IGNORE condition relative to the other conditions, suggesting that the response to the jump is contingent on the jump being a task-relevant event.  相似文献   
58.
Inhibition of return (IOR) has been shown to occur when an individual returns to a target location (within-person IOR) and when an individual moves to a location just engaged by another individual (between-person IOR). Although within- and between-person IOR likely result from the same inhibitory mechanisms, different processes must activate these mechanisms following the performance and observation of action. Consistent with the suggestion that the mirror neuron system may be responsible for activating the inhibitory mechanisms behind IOR on observation trials, between-person IOR was only detected under restricted viewing conditions known to activate mirror neurons. These results indicate that mirror neuron system may be involved in both higher-order and automatic cognitive behavior.  相似文献   
59.
The influence of information-based dynamics on coordination dynamics of rhythmic movement was examined with special reference to the expression of asymmetries. In Experiment 1, right-handed subjects performed unimanual, rhythmical movements in coordination with either a discrete or continuous visual display. The right hand-visual display system defined a more stable perception-action collective than the left, particularly when continuous visual information was available. In Experiment 2, the same subjects performed rhythmic bimanual movements in coordination with a continuous visual display. The action collective was inherently more stable than the perception-action collective, although similar patterns were observed at both levels. Importantly, the dynamics of the perception-action collective impinged upon the dynamics of the action collective in terms of stability. Asymmetries remained evident between limbs in the bimanual preparations, with the left hand exhibiting greater limit-cycle variability and also a tendency to more often effect transitions at the action couple. Features of dynamical models that capture characteristics of manual asymmetries are discussed.  相似文献   
60.
An influential theory of visually guided action proposes that (a) conscious perception of target displacement disrupts on-line action and (b) small target perturbations are inconsequential, provided the participant is unaware of them. This study examined these claims in a study of rapid aiming movements to targets. Novel features included on-line verbal reports of target displacement, and the factorial combination of small versus large displacements occurring near peak saccadic velocity or 100 ms later. Although awareness of target displacement had no effect on movement kinematics, even small target displacements near peak saccadic velocity affected kinematic measures. These results support both a strong view of visual stream separation in the on-line control of action and richer spatial coding by unconscious processes than has previously been acknowledged.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号