首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   5篇
  333篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   9篇
  2019年   10篇
  2018年   12篇
  2017年   13篇
  2016年   13篇
  2015年   9篇
  2014年   7篇
  2013年   40篇
  2012年   13篇
  2011年   12篇
  2010年   11篇
  2009年   12篇
  2008年   6篇
  2007年   10篇
  2006年   10篇
  2005年   6篇
  2004年   7篇
  2003年   5篇
  2002年   11篇
  2001年   5篇
  2000年   5篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1991年   2篇
  1990年   7篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1985年   6篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1968年   2篇
  1967年   2篇
  1966年   3篇
  1965年   4篇
排序方式: 共有333条查询结果,搜索用时 0 毫秒
91.
A fundamental assumption of most IRT models is that items measure the same unidimensional latent construct. For the polytomous Rasch model two ways of testing this assumption against specific multidimensional alternatives are discussed. One, a marginal approach assuming a multidimensional parametric latent variable distribution, and, two, a conditional approach with no distributional assumptions about the latent variable. The second approach generalizes the Martin-Löf test for the dichotomous Rasch model in two ways: to polytomous items and to a test against an alternative that may have more than two dimensions. A study on occupational health is used to motivate and illustrate the methods.The authors would like to thank Niels Keiding, Klaus Larsen and the anonymous reviewers for valuable comments to a previous version of this paper. This research was supported by a grant from the Danish Research Academy and by a general research grant from Quality Metric, Inc.  相似文献   
92.
93.
94.
95.
96.
This paper addresses methodological issues that concern the scaling model used in the international comparison of student attainment in the Programme for International Student Attainment (PISA), specifically with reference to whether PISA’s ranking of countries is confounded by model misfit and differential item functioning (DIF). To determine this, we reanalyzed the publicly accessible data on reading skills from the 2006 PISA survey. We also examined whether the ranking of countries is robust in relation to the errors of the scaling model. This was done by studying invariance across subscales, and by comparing ranks based on the scaling model and ranks based on models where some of the flaws of PISA’s scaling model are taken into account. Our analyses provide strong evidence of misfit of the PISA scaling model and very strong evidence of DIF. These findings do not support the claims that the country rankings reported by PISA are robust.  相似文献   
97.
    
This article reviews the causal implications of latent variable and psychometric network models for the validation of personality trait questionnaires. These models imply different data generating mechanisms that have important consequences for the validity and validation of questionnaires. From this review, we formalize a framework for assessing the evidence for the validity of questionnaires from the psychometric network perspective. We focus specifically on the structural phase of validation, where items are assessed for redundancy, dimensionality, and internal structure. In this discussion, we underline the importance of identifying unique personality components (i.e. an item or set of items that share a unique common cause) and representing the breadth of each trait's domain in personality networks. After, we argue that psychometric network models have measures that are statistically equivalent to factor models but we suggest that their substantive interpretations differ. Finally, we provide a novel measure of structural consistency, which provides complementary information to internal consistency measures. We close with future directions for how external validation can be executed using psychometric network models. © 2020 European Association of Personality Psychology  相似文献   
98.
99.
    
Much of recent affect research relies on intensive longitudinal studies to assess daily emotional experiences. The resulting data are analyzed with dynamic models to capture regulatory processes involved in emotional functioning. Daily contexts, however, are commonly ignored. This may not only result in biased parameter estimates and wrong conclusions, but also ignores the opportunity to investigate contextual effects on emotional dynamics. With fixed moderated time series analysis, we present an approach that resolves this problem by estimating context-dependent change in dynamic parameters in single-subject time series models. The approach examines parameter changes of known shape and thus addresses the problem of observed intra-individual heterogeneity (e.g., changes in emotional dynamics due to observed changes in daily stress). In comparison to existing approaches to unobserved heterogeneity, model estimation is facilitated and different forms of change can readily be accommodated. We demonstrate the approach's viability given relatively short time series by means of a simulation study. In addition, we present an empirical application, targeting the joint dynamics of affect and stress and how these co-vary with daily events. We discuss potentials and limitations of the approach and close with an outlook on the broader implications for understanding emotional adaption and development.  相似文献   
100.
  总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号