首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   7篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   10篇
  2018年   3篇
  2017年   7篇
  2016年   7篇
  2015年   9篇
  2014年   10篇
  2013年   8篇
  2012年   6篇
  2011年   14篇
  2010年   4篇
  2009年   8篇
  2008年   4篇
  2007年   8篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  1999年   1篇
  1998年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   2篇
  1970年   2篇
  1968年   1篇
  1965年   2篇
  1964年   1篇
  1963年   2篇
  1962年   2篇
  1960年   2篇
排序方式: 共有150条查询结果,搜索用时 62 毫秒
141.
142.
We investigated young children's awareness of the context‐relative rule structure of simple games. Two contexts were established in the form of spatial locations. Familiar objects were used in their conventional way at location 1, but acquired specific functions in a rule game at location 2. A third party then performed the conventional act at either of the two locations, constituting a mistake at location 2 (experimental condition), but appropriate at location 1 (control condition). Three‐year‐olds (but not 2‐year‐olds) systematically distinguished the two conditions, spontaneously intervening with normative protest against the third party act in the experimental, but not in the control condition. Young children thus understand context‐specific rules even when the context marking is non‐linguistic. These results are discussed in the broader context of the development of social cognition and cultural learning.  相似文献   
143.
ABSTRACT

When do children acquire a meta-representational Theory of Mind? False Belief (FB) tasks have become the litmus test to answer this question. In such tasks, subjects must ascribe a non-veridical belief to another agent and predict/explain her actions accordingly. Empirically, children pass explicit verbal versions of FB tasks from around age 4. The standard interpretation of this finding is that children at this age have acquired a solid capacity for meta-representation. New research with true belief (TB) control tasks, however, presents a puzzling phenomenon: While 3-year-olds pass these tasks but fail FB tasks, children from age 4 begin to show the reverse performance (passing FB but failing TB). Competence deficit accounts claim that these findings jeopardize the standard interpretation; they show that children may use simple heuristics rather than true meta-representation and that the original FB findings may thus have been false positives. Pragmatic performance limitation accounts, in contrast, claim that these findings do not document any conceptual limitations, but merely reflect children’s confusion in light of the task pragmatics. In the present study, the two accounts were tested against each other in seven experiments with 4- to 7-year-old children. Pragmatic tasks factors of TB tests were systematically modified. Results show that children’s difficulty with TB tasks indeed disappeared after some such modifications. This clearly speaks against competence limitation accounts and corroborates the standard interpretation of FB and related Theory of Mind tasks.  相似文献   
144.
ABSTRACT

It has been suggested that due to functional similarity, sortal object individuation might be a primordial form of psychological essentialism. For example, the relative independence of identity judgment from perceived surface features is a characteristic of essentialist reasoning. Also, infants engaging in sortal object individuation pay more attention to kind than surface feature information when judging the identity of objects (e.g.). Indeed, previous research found that 14-month-old infants can judge trans-temporal identity even in complete absence of kind-specific surface features. Here, we used another more demanding non-linguistic paradigm to test the limits of these abilities in 14-, 18-, 23- and 36-month-old infants, comparing their performance to recent great ape data. Particularly, we presented infants with two food kinds, whose surface features were then fully transformed to make them look identical. If reasoning according to essentialist principles, participants should select the preferred item despite superficial manipulations. However, only 36-month-olds reliably tracked the preferred item after superficial manipulations. This suggests that, although basic psychological essentialism may emerge early in infancy, more complex forms require domain-general cognitive prerequisites, which only develop in more protracted form.  相似文献   
145.
146.
147.
Spatial memory comprises different representational systems that are sensitive to different environmental cues, like proximal landmarks or local boundaries. Here we examined how sleep affects the formation of a spatial representation integrating landmark-referenced and boundary-referenced representations. To this end, participants (n = 42) were familiarized with an environment featuring both a proximal landmark and a local boundary. After nocturnal periods of sleep or wakefulness and another night of sleep, integration of the two representational systems was tested by testing the participant''s flexibility to switch from landmark-based to boundary-based navigation in the environment, and vice versa. Results indicate a distinctly increased flexibility in relying on either landmarks or boundaries for navigation, when familiarization to the environment was followed by sleep rather than by wakefulness. A second control study (n = 45) did not reveal effects of sleep (vs. wakefulness) on navigation in environments featuring only landmarks or only boundaries. Thus, rather than strengthening isolated representational systems per se, sleep presumably through forming an integrative representation, enhances flexible coordination of representational subsystems.

Wilson and McNaughton (1994) reported that “… information acquired during active behavior is … reexpressed in hippocampal circuits during sleep….” This observation of experience-dependent neural replay activity in the brain during slow-wave sleep (for review, see O''Neill et al. 2010) forms a keystone in our current understanding of how sleep affects memory consolidation in an active system consolidation process that involves the redistribution of hippocampal memory to extrahippocampal regions (McClelland et al. 1995; Diekelmann and Born 2010; Klinzing et al. 2019). According to theory, the emerging extrahippocampal memory representations are essentially schematic, devoid of specific context-information, and lack minute detail (Lewis and Durrant 2011; Payne 2011; Sekeres et al. 2018). Simultaneously, hippocampal replay strengthens hippocampal memory traces in the short-term following Hebbian learning, leading to improved context memory immediately after sleep compared with wakefulness (van der Helm et al. 2011; Weber et al. 2014). In the present study, we sought to test sleep''s role in establishing higher-level memory representations drawing on the example of spatial memory processing.Inspired by the strong role of the hippocampal formation in human spatial memory (Burgess 2008; Hartley et al. 2014) a number of studies examined effects of sleep specifically on spatial memory consolidation (Peigneux et al. 2004; Orban et al. 2006; Ferrara et al. 2008; Rauchs et al. 2008; Wamsley et al. 2010; Nguyen et al. 2013; Noack et al. 2017). In these studies, participants explored a virtual environment during a learning phase before retention periods of sleep and wakefulness and, later on, engaged in specific retrieval tasks that required to reach a predefined goal location in the environment as fast as possible. Results were mixed with, some studies reporting positive effects of sleep on spatial navigation performance (e.g., Peigneux et al. 2004; Wamsley et al. 2010; Nguyen et al. 2013; Noack et al. 2017), whereas in others such sleep effect depended on the length of the retention interval (e.g., Ferrara et al. 2008), or was completely absent (Orban et al. 2006; Rauchs et al. 2008). Interestingly, in the latter studies—despite absent behavioral effects—using a 72-h retention interval between learning and retrieval testing, functional magnetic resonance imaging (fMRI) suggested that sleep favors a shift from activation of hippocampal areas toward preferential activation of striatal areas at retrieval of the relevant spatial representations.Indeed, spatial navigation can rely on two distinct representational systems that involve as key structures hippocampal and striatal circuitry, respectively, and are also linked to different spatial frames of reference (Burgess 2008; Hartley et al. 2014). Doeller et al. (2008) showed in humans that striatal activation is linked to the processing of single proximal landmarks whereas hippocampal activation is related to the processing of spatial boundaries, and that acquisition of representations in both systems may follow different learning rules (Doeller and Burgess 2008). The subject''s reliance on one or the other representation system depends on the specific navigational problem (Maguire et al. 1998; Hartley et al. 2003) as well as familiarity with the environment (Hartley et al. 2003; Iaria et al. 2003; Packard and McGaugh 1996), but both systems can also be activated in parallel and interact. For example, patients with hippocampal atrophy showed impaired memory performance not only for boundary-based but also for landmark-based navigation (Guderian et al. 2015) suggesting the presence of synergistic effects between the representational systems. The activation of the representational systems is presumably coordinated by the medial prefrontal cortex (Ragozzino et al. 1999; Doeller et al. 2008; Rich and Shapiro 2009), that is, a region that is not only involved in the abstraction of schema-like spatial representations (Tse et al. 2011; van Buuren et al. 2014) but, also shows neuronal reactivation during sleep (Euston et al. 2007; Peyrache et al. 2009).In fact, there is first evidence suggesting that sleep supports the formation of abstract representations of space in particular. We found, for example, that sleep benefitted the extraction of semantic structure (regions defined by semantic category of landmarks) in a virtual navigation task (Noack et al. 2017). To date, there is no study, however, to specifically test the interaction between landmark- and boundary-referenced representations of space and their integration during sleep. Here we sought to fill this gap. Drawing on the active systems consolidation concept of sleep (Dudai et al. 2015; Klinzing et al. 2019) and on the existing literature, we followed the hypothesis that, rather than benefiting a specific spatial representation, sleep via neuronal replay primarily supports the formation of an integrative schema-like spatial representation and, thereby, improves flexibility in the use of hippocampus-based and striatum-based representations.To this end, we conducted two experiments, a Main experiment and a Control experiment, using a virtual spatial environment with one proximal landmark and a local boundary (Fig. 1) to preferentially engage striatum and hippocampus-based representational systems, respectively (Doeller et al. 2008). The Main experiment was designed to test the effect of sleep on the integration of landmark-referenced and boundary-referenced representations of space. To this end, participants were first familiarized with an environment featuring both a landmark and a boundary, thereby encoding both hippocampal as well as striatal representations of the environment. In order to test whether sleep enhances the integration of these representations, participants either slept or remained awake on the night after the Familiarization phase. They then learned new objects in impoverished environments featuring the same spatial cues (landmark and boundary) at the same locations but only one at a time. At a final Test session, the integration of the combined environmental layout including landmark and boundary (as presented during Familiarization before sleep) was investigated by the participant''s flexibility to switch from landmark-based to boundary-based navigation in the environment, and vice versa, from boundary-based to landmark-based navigation (Fig. 1). In the Control experiment, we investigated the direct effect of postlearning sleep or wakefulness on the consolidation of spatial memory representation that were either merely boundary-referenced or landmark-referenced, thereby controlling for general effects of sleep on spatial memory performance.Open in a separate windowFigure 1.Task and general procedures. (A) Example views on the three different environments. (Panel i) landmark and boundary present, as used in the Familiarization phase of the Main experiment. Alpine environment (panel ii), and Desert environment (panel iii) as used in the Control experiment. (B) Task procedure: The task featured three different trial types in both experiments. (Panel i) Acquisition trials were presented at the start of Familiarization and Learning phases in both experiments. (Panel ii) Feedback and Test trials started with the presentation of an object on a gray screen. Participants were then placed in the experimental environment containing boundary (thick encirclement), landmarks (traffic cone) or both, and dropped the object at the location where they found it during acquisition. In Feedback trials feedback was given by presenting the object at its correct location. Participants navigated to it to collect it. (C) Design of Main experiment: Environment featured both landmark and boundary cues during Familiarization. The Test session comprised Learning phase and Retrieval phase. Only one spatial cue (landmark or boundary) was present during each trial of the Learning and Retrieval phase (three objects with landmark, three objects with boundary). Object reference switched from Learning to Retrieval phase: Objects presented together with the landmark during learning were presented with boundary during retrieval and vice versa. Note that a specific spatial cue was always at the same relative position when presented during Familiarization, Learning, and Test. (D) Design of Control experiment: Participants were randomly assigned to the Boundary or the Landmark group, whereas all participants performed in Wake and Sleep condition. Each of the two visits (sleep and wake) consisted of two sessions (learning: six Acquisition trials + four blocks and six feedback trials; retrieval: three blocks and six Test trials).To preview our results: Whereas there was no effect of sleep on landmark- and boundary-referenced spatial memory per se in the Control experiment, sleep indeed facilitated the flexible use of different spatial retrieval cues possibly based on a superior integrated spatial memory representation.  相似文献   
148.
149.
150.
Editorial     
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号