首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   1篇
  2014年   2篇
  2013年   22篇
  2012年   3篇
  2011年   2篇
  2010年   3篇
  2009年   7篇
  2008年   5篇
  2007年   1篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1991年   2篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   4篇
  1968年   4篇
  1967年   1篇
  1966年   1篇
  1962年   3篇
  1961年   1篇
  1959年   1篇
  1957年   1篇
  1956年   1篇
  1954年   1篇
  1951年   1篇
  1948年   2篇
排序方式: 共有136条查询结果,搜索用时 15 毫秒
131.
132.
133.
134.
N D Haig 《Perception》1986,15(4):373-386
For recognition of a target there must be some form of comparison process between the image of that target and a stored representation of that target. In the case of faces there must be a very large number of such stored representations, yet human beings seem able to perform comparisons at phenomenal speed. It is possible that faces are memorized by fitting unusual features or combinations of features onto a bland prototypical face, and such a data-compression technique would help to explain our computational speed. If humans do indeed function in this fashion, it is necessary to ask just what are the features that distinguish one face from another, and also, what are the features that form the basic set of the prototypical face. The distributed apertures technique was further developed in an attempt to answer both questions. Four target faces, stored in an image-processing computer, were each divided up into 162 contiguous squares that could be displayed in their correct positions in any combination of 24 or fewer squares. Each observer was required to judge which of the four target faces was displayed during a 1 s presentation, and the proportion of correct responses for each individual square was computed. The resultant response distributions, displayed as brightness maps, give a vivid impression of the relative saliency of each feature square, both for the individual targets and for all of them combined. The results, while broadly confirming previous work, contain some very interesting and surprising details about the differences between the target faces.  相似文献   
135.
136.
N D Haig 《Perception》1985,14(5):601-615
It can be argued that the process of recognizing faces progresses in two stages: first, the realisation that a perceived image contains patterns that may most reasonably be interpreted as forming a discrete face; second, correct and positive identification by noting the particular features that differentiate one face from all others. A novel technique which explored the latter process in the particular case of four different (male) faces is described. The experiment took the form of a four-alternatives forced-choice presentation of faces behind masks which contained a number of randomly positioned apertures. The percentage of correct responses for each separate aperture was then computed after a large number of 1 s presentations to four observers. This novel form of experiment suggested an equally novel form of pictorial data presentation that, literally, highlights the salient features of each individual face and thereby allows detailed intercomparison merely by inspection. Summing over all targets and observers reveals a strong preference for eyes and eyebrows, followed closely by the hairline above the temples. Next in order of preference comes the mouth and upper-lip area, followed by the lateral hairline beside each temple. Individual differences are strong, however, and the variations are such as to suggest that the uncritical application of generalised feature saliency lists is neither useful nor appropriate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号