首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2013年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  1994年   1篇
排序方式: 共有11条查询结果,搜索用时 0 毫秒
11.
Before infants can learn words, they must identify those words in continuous speech. Yet, the speech signal lacks obvious boundary markers, which poses a potential problem for language acquisition (Swingley, Philos Trans R Soc Lond. Series B, Biol Sci 364 (1536), 3617–3632, 2009). By the middle of the first year, infants seem to have solved this problem (Bergelson & Swingley, Proc Natl Acad Sci 109 (9), 3253–3258, 2012; Jusczyk & Aslin, Cogn Psychol 29 , 1–23, 1995), but it is unknown if segmentation abilities are present from birth, or if they only emerge after sufficient language exposure and/or brain maturation. Here, in two independent experiments, we looked at two cues known to be crucial for the segmentation of human speech: the computation of statistical co‐occurrences between syllables and the use of the language's prosody. After a brief familiarization of about 3 min with continuous speech, using functional near‐infrared spectroscopy, neonates showed differential brain responses on a recognition test to words that violated either the statistical (Experiment 1) or prosodic (Experiment 2) boundaries of the familiarization, compared to words that conformed to those boundaries. Importantly, word recognition in Experiment 2 occurred even in the absence of prosodic information at test, meaning that newborns encoded the phonological content independently of its prosody. These data indicate that humans are born with operational language processing and memory capacities and can use at least two types of cues to segment otherwise continuous speech, a key first step in language acquisition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号