首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   349篇
  免费   27篇
  2023年   8篇
  2022年   3篇
  2021年   12篇
  2020年   7篇
  2019年   20篇
  2018年   13篇
  2017年   17篇
  2016年   22篇
  2015年   11篇
  2014年   17篇
  2013年   29篇
  2012年   19篇
  2011年   24篇
  2010年   9篇
  2009年   10篇
  2008年   15篇
  2007年   28篇
  2006年   14篇
  2005年   8篇
  2004年   9篇
  2003年   10篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   6篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1983年   3篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1969年   1篇
  1967年   2篇
  1963年   1篇
排序方式: 共有376条查询结果,搜索用时 15 毫秒
371.
372.
In conditioned odor aversion (COA), the association of a tasteless odorized solution (the conditioned stimulus [CS]) with an intraperitoneal injection of LiCl (the unconditioned stimulus [US[), which produces visceral malaise, results in its future avoidance. The strength of this associative memory is mainly dependent on two parameters, that is, the strength of the US and the interstimuli interval (ISI). In rats, COA has been observed only with ISIs of ≤15 min and LiCl (0.15 M) doses of 2.0% of bodyweight, when tested 48 h after acquisition (long-term memory [LTM]). However, we previously reported a robust aversion in rats trained with ISIs up to 60 min when tested 4 h after acquisition (short-term memory [STM]). Since memories get reactivated during retrieval, in the current study we hypothesized that testing for STM would reactivate this COA trace, strengthening its LTM. For this, we compared the LTM of rats trained with long ISIs or low doses of LiCl initially tested for STM with that of rats tested for LTM only. Interestingly, rats conditioned under parameters sufficient to produce STM, but not LTM, showed a reliable LTM when first tested for STM. These observations suggest that under suboptimal training conditions, such as long ISIs or low US intensities, a CS–US association is established but requires reactivation in the short-term in order to persist in the long-term.

The dynamic and malleable nature of memories is a well-studied phenomenon. Traditionally, for memory formation to occur, a set of processes collectively known as consolidation are thought to be needed in order to stabilize memories, making them susceptible to modification during this period (Dudai et al. 2015). More recently a slightly distinct theory, known as memory integration, was proposed according to which memories are rapidly formed during learning without the need for consolidation, but any relevant information around the event can be integrated modifying them (Gisquet-Verrier and Riccio 2019). Common to both theories though, is that memories alternate between an inactive and an active state and modifications can mostly occur during the active state, which lasts for some time after learning, or during its reactivation due to retrieval (Lee et al. 2017; Albo and Gräff 2018; Gisquet-Verrier and Riccio 2019). Thus, memory malleability is explained either because consolidation can be altered or because additional information can be integrated with the initial memory (Bailey et al. 1996; Dudai 2004; Wixted 2004; Alberini et al. 2006; Lee et al. 2008, 2017; McGaugh and Roozendaal 2009; Roesler and Schröder 2011; Dudai et al. 2015; Nader 2015; Crossley et al. 2019; Gisquet-Verrier and Riccio 2019).In conditioned odor aversion (COA), an odorized tasteless solution (conditioned stimulus, CS) whose ingestion is followed by gastrointestinal malaise (unconditioned stimulus, US) is rejected in future encounters (conditioned response, CR). In most COA studies, a robust aversion has been observed only when the interstimulus interval (ISI) is ∼5 min, and no significant aversion can be seen when the ISI is >15 min (Hankins et al. 1973; Palmerino et al. 1980; Ferry et al. 1995, 1996; Ferry and di Scala 1997; Ferry et al. 2006; Chapuis et al. 2007). This observation has been attributed to a short-lasting memory of the odor that becomes unavailable for its association with the US after ISI >15 min. However, in all these instances the CR was measured 48 h after conditioning (LTM test), leaving up the possibility that CS–US association was formed but somehow did not last till the long-term. In keeping with this possibility, we previously reported a significant aversion during a test performed 4 h after conditioning (i.e., STM test) in rats trained with ISIs up to 60 min, three times longer than previously described (Tovar-Díaz et al. 2011). The LTM, however, was not tested so no further insight was provided regarding its persistence due to STM reactivation.Thus, in the current paper we hypothesized that a STM test would reactivate the initial memory, allowing it to further consolidate/integrate the information and to persist in the LTM. To test this possibility, we trained independent groups of rats with reduced US intensities or prolonged ISIs in a standard two-bottle choice COA paradigm and tested them twice at 4 and 48 h after conditioning. Our findings suggest that COA takes place under milder US and longer ISIs than previously thought and reactivating this memory during the STM test promotes its persistence in the LTM test.  相似文献   
373.
This study examines the relation between adolescents’ indirect exposure to local homicides and mental health disorders and post‐traumatic stress disorder (PTSD) symptoms. We employ a sample of 300 adolescents ( representative for Bogotá, Colombia, and geocoded data on violent crimes recorded by the national police. Findings show that one SD increment in local homicides is associated with increments by 0.17 SD in the mental health disorder index and a 0.14 SD increase in the PTSD score index, even after accounting for adolescents’ direct exposure to violence. The estimated effect for PTSD was larger for adolescents’ who were directly exposed to violence and for those living in multidimensionally poor households, whereas no detectable effects were found for adolescents who perceived their residential neighborhood as relatively safe.  相似文献   
374.
Dysfunctions in memory recall lead to pathological fear; a hallmark of trauma-related disorders, like posttraumatic stress disorder (PTSD). Both, heightened recall of an association between a cue and trauma, as well as impoverished recall that a previously trauma-related cue is no longer a threat, result in a debilitating fear toward the cue. Glucocorticoid-mediated action via the glucocorticoid receptor (GR) influences memory recall. This literature has primarily focused on GRs expressed in neurons or ignored cell-type specific contributions. To ask how GR action in nonneuronal cells influences memory recall, we combined auditory fear conditioning in mice and the knockout of GRs in astrocytes in the prefrontal cortex (PFC), a brain region implicated in memory recall. We found that knocking out GRs in astrocytes of the PFC disrupted memory recall. Specifically, we found that knocking out GRs in astrocytes in the PFC (AstroGRKO) after fear conditioning resulted in higher levels of freezing to the CS+ tone when compared with controls (AstroGRintact). While we did not find any differences in extinction of fear toward the CS+ between these groups, AstroGRKO female but not male mice showed impaired recall of extinction training. These results suggest that GRs in cortical astrocytes contribute to memory recall. These data demonstrate the need to examine GR action in cortical astrocytes to elucidate the basic neurobiology underlying memory recall and potential mechanisms that underlie female-specific biases in the incidence of PTSD.

Recalling important information about salient environmental cues is an integral part of how we navigate our world. Recalling too much, or too little, information about salient environmental cues is a part of the psychopathology of posttraumatic stress disorder (PTSD) (Milad and Quirk 2012). More specifically, the augmented recall of an association between an environmental cue and a traumatic event results in debilitating fear toward the cue, even in the absence of any threat. In contrast, impoverished recall of information that a cue, previously associated with trauma, is no longer a threat also results in debilitating fear toward the cue after it is no longer dangerous. Therefore, one way to mitigate debilitating fear that characterizes PTSD is to understand the neurobiological mechanisms underlying memory recall.Among many mechanisms, glucocorticoid action via signaling through glucocorticoid receptors (GRs) is an important neurobiological pathway that underlies the recall of salient information. When trauma-associated cues are encountered, the hypothalamic-pituitary-adrenal axis is activated and GR signaling is consequently triggered (McEwen et al. 1988; McEwen 1992; Lupien et al. 2009). Existing literature demonstrates that glucocorticoids and GRs do in fact influence learning, memory, and the recall of learning (Pugh et al. 1997; de Quervain et al. 1998, 2009, 2011, 2017, 2019; Roozendaal 2002, 2003; Conrad et al. 2004; Hui et al. 2004; Donley et al. 2005; Roozendaal and de Quervain 2005; Cai et al. 2006; Soravia et al. 2006; Yang et al. 2006; Roozendaal et al. 2009; Bentz et al. 2010; Blundell et al. 2011; Clay et al. 2011; Nikzad et al. 2011; Roesler 2012; Liao et al. 2013; Wislowska-Stanek et al. 2013; Arp et al. 2016; Reis et al. 2016; Dadkhah et al. 2018; Inoue et al. 2018; Scheimann et al. 2019; Lin et al. 2020). The relationship between glucocorticoids, GRs, learning and memory is complicated and within the literature cited above, one can find examples of GR action being facilitatory as well as inhibitory to learning and memory recall. As expansive as this research is, the influence of GRs on learning, memory, and recall of learning has mostly focused only on GR action in neurons or has ignored cell type specific contributions. While glia are approximately as common as neurons in the nervous system (von Bartheld et al. 2016; von Bartheld 2018), the role of GRs in glial cells on the recall of salient environmental cues has been neglected. More specifically, while astrocytes comprise a significant proportion of the glial cell population (von Bartheld et al. 2016) and express GRs (Vielkind et al. 1990; Bohn et al. 1991), the influence of GRs in astrocytes on memory recall remains largely unappreciated (for one exception, see the Discussion).Our goal in this study was to determine the influence of GRs in astrocytes on memory recall. To do so, we combined the robust and reliable experimental framework of classical fear conditioning in rodents (Santini et al. 2008; Dias et al. 2014; Bukalo et al. 2015; Keiser et al. 2017; Giustino and Maren 2018; Greiner et al. 2019; Gunduz-Cinar et al. 2019; Venkataraman et al. 2019) with molecular genetic manipulations in the prefrontal cortex (PFC), a brain region critical for the recall of memory (Morgan and LeDoux 1995; Quirk et al. 2000; Mueller et al. 2008; Quirk and Mueller 2008; Giustino and Maren 2015; Rozeske et al. 2015; Maren and Holmes 2016). We first trained mice to associate tone presentations with mild footshocks. After this auditory fear conditioning, we used a CRE-loxP strategy to specifically knock out GRs in astrocytes in the PFC (hereafter termed cortical astrocytes) of these trained mice. We then exposed animals to extinction training: 30 presentations of the tone in the absence of any footshocks. Finally, 1 d after the extinction training, we exposed animals to two presentations of the tone. This experimental timeline allowed us to ask how a lack of GRs in cortical astrocytes influences (1) the recall of the previous aversive association of the tone presentation with the footshock, (2) the extinction of fear that would typically occur during extinction training, and (3) the recall of extinction training allowing us to measure the influence of GRs in cortical astrocytes on the recall of extinction training. Broadly, our results demonstrate that knocking out GRs in cortical astrocytes disrupts fear memory recall in both male and female mice, while only disrupting extinction recall in female mice.  相似文献   
375.
376.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号