首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
  23篇
  2018年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   4篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1996年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有23条查询结果,搜索用时 8 毫秒
11.
Search for a ball that has undergone hidden motion rapidly improves during the second year of life (Dev. Psychol., 2000; 36 :394–401). In three experiments we investigated whether the poor performance of younger toddlers was due to attentional failure by highlighting the major cue for the hidden object. We observed only slight improvement in search behaviour. We performed two other experiments that tested the depth of understanding of 3‐year‐olds in this task and found that their performance was robust to changes in the apparatus and experimental procedures. Overall, the results point to a rapidly developing ability in the second year of life to either reason about space or select the correct motor response in search tasks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
12.
Preferential-looking studies suggest that by 2 months of age, infants may have knowledge about some object properties, such as solidity. Manual search studies of toddlers examining these same concepts, however, have failed to provide evidence for the same understanding. Investigators have recently attempted to reconcile this disparity but failed to control for the visual novelty of test outcomes. The current design corrected this problem and also tested toddlers' predictions of the object's location. The task involved the same events and apparatus that have been used in manual search tasks but used looking as the dependent measure. Children looked longer when an agent opened the correct door and found no ball than when an incorrect door was opened to reveal no ball. A 2nd experiment indicated that children's preferential-looking performance did not differ from that in manual search tasks simply because additional response time had been allowed to respond. Previous comparisons of looking versus reaching tested children's postdiction response to an object in an unexpected location, but these findings indicate that toddlers can predict where the object should be.  相似文献   
13.
The role of vision in the control of reaching and grasping was investigated by varying the available visual information. Adults (N = 7) reached in conditions that had full visual information, visual information about the target object but not the hand or surrounding environment, and no visual information. Four different object diameters were used. The results indicated that as visual information and object size decreased, subjects used longer movement times, had slower speeds, and more asymmetrical hand-speed profiles. Subjects matched grasp aperture to object diameter, but overcompensated with larger grasp apertures when visual information was reduced. Subjects also qualitatively differed in reach kinematics when challenged with reduced visual information or smaller object size. These results emphasize the importance of vision of the target in reaching and show that subjects do not simply scale a command template with task difficulty.  相似文献   
14.
When infants catch a rolling ball by intercepting its trajectory, the action is prospectively controlled to take account of the object's speed, direction and path. We complicated this task in two ways: by occluding a portion of the ball's path with a screen, and by sometimes placing a barrier that blocked the ball's path behind the screen. In two experiments we manipulated visual information about the barrier and the ball's trajectory to see how this would aid 9‐month‐olds’ performance. Anticipatory reaching was possible but difficult with a partially occluded trajectory; actually catching the ball was aided by full view of the trajectory although timing of reach onset was not affected. Full sight of the barrier and trajectory through a transparent screen prevented inappropriate reaching, whereas sight of the barrier alone through a ‘window’ in an opaque screen did not. We interpreted these results as evidence for decreased performance as cognitive load increased with the loss of visual information. In contrast to anticipatory reaching behavior, search for the ball after it disappeared behind the screen was facilitated by the opaque window condition, confirming previous studies that found superior search with opaque versus transparent screens.  相似文献   
15.
16.
17.
The undershoot bias: learning to act optimally under uncertainty   总被引:1,自引:0,他引:1  
Abstract - Learning in stochastic environments is increasingly viewed as an important psychological ability. To extend these results from a perceptual to a motor domain, we tested whether participants could learn to solve a stochastic minimal-time task using exploratory learning. The task involved moving a cursor on a computer screen to a target. We systematically varied the degree of random error in movement in three different conditions; each condition had a distinct time-optimal solution. We found that participants approximated the optimal solutions with practice. The results show that adults are sensitive to the stochastic structure of a task and naturally adjust the magnitude of an undershoot bias to the particular movement error of a task.  相似文献   
18.
Individuals are assumed to plan reach-and-grasp movements by using two separate processes. In 1 of the processes, extrinsic (direction, distance) object information is used in planning the movement of the arm that transports the hand to the target location (transport planning); whereas in the other, intrinsic (shape) object information is used in planning the preshaping of the hand and the grasping of the target object (manipulation planning). In 2 experiments, the authors used primes to provide information to participants (N = 5, Experiment 1; N = 6, Experiment 2) about extrinsic and intrinsic object properties. The validity of the prime information was systematically varied. The primes were succeeded by a cue, which always correctly identified the location and shape of the target object. Reaction times were recorded. Four models of transport and manipulation planning were tested. The only model that was consistent with the data was 1 in which arm transport and object manipulation planning were postulated to be independent processes that operate partially in parallel. The authors suggest that the processes involved in motor planning before execution are primarily concerned with the geometric aspects of the upcoming movement but not with the temporal details of its execution.  相似文献   
19.
McCarty and colleagues (1999) developed the elevated spoon task to measure motor planning in human infants. In this task, a spoon containing food was placed on an elevated apparatus that supported both ends of the spoon. The handle was oriented to the left or right on different trials. We presented naïve adult rhesus monkeys (Macaca mulatta) with the elevated spoon problem, and observed how monkeys learned the affordances of spoons over sessions. Strikingly, monkeys developed two different strategies for efficient spoon transport in just 12 to 36 trials. In subsequent testing with a novel double bowl spoon approximately 1 year later, monkeys demonstrated that they were attending to the baited spoon bowl and continued to select efficient grips for transporting the spoon. Monkey data were contrasted with previous studies in human infants using a perception‐action perspective in an effort to understand the fundamentals of tool use and motor planning that may be common in the development of these abilities across species and their origins in human behavior.  相似文献   
20.
Approximate optimal control as a model for motor learning   总被引:2,自引:0,他引:2  
Current models of psychological development rely heavily on connectionist models that use supervised learning. These models adapt network weights when the network output does not match the target outputs computed by some agent. The authors present a model of motor learning in which the child uses exploration to discover appropriate ways of responding. The model is consistent with what is known about how neural systems evaluate behavior. The authors model the development of reaching and investigate N. Bernstein's (1967) hypotheses about early motor learning. Simulations show the course of learning as well as model the kinematics of reaching by a dynamical arm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号