首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  2019年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
  1998年   2篇
  1993年   1篇
  1990年   1篇
  1985年   1篇
  1975年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
11.
Some robots have been given emotional expressions in an attempt to improve human-computer interaction. In this article we analyze what it would mean for a robot to have emotion, distinguishing emotional expression for communication from emotion as a mechanism for the organization of behavior. Research on the neurobiology of emotion yields a deepening understanding of interacting brain structures and neural mechanisms rooted in neuromodulation that underlie emotions in humans and other animals. However, the chemical basis of animal function differs greatly from the mechanics and computations of current machines. We therefore abstract from biology a functional characterization of emotion that does not depend on physical substrate or evolutionary history, and is broad enough to encompass the possible emotions of robots.  相似文献   
12.
Arbib MA 《The Behavioral and brain sciences》2005,28(2):105-24; discussion 125-67
The article analyzes the neural and functional grounding of language skills as well as their emergence in hominid evolution, hypothesizing stages leading from abilities known to exist in monkeys and apes and presumed to exist in our hominid ancestors right through to modern spoken and signed languages. The starting point is the observation that both premotor area F5 in monkeys and Broca's area in humans contain a "mirror system" active for both execution and observation of manual actions, and that F5 and Broca's area are homologous brain regions. This grounded the mirror system hypothesis of Rizzolatti and Arbib (1998) which offers the mirror system for grasping as a key neural "missing link" between the abilities of our nonhuman ancestors of 20 million years ago and modern human language, with manual gestures rather than a system for vocal communication providing the initial seed for this evolutionary process. The present article, however, goes "beyond the mirror" to offer hypotheses on evolutionary changes within and outside the mirror systems which may have occurred to equip Homo sapiens with a language-ready brain. Crucial to the early stages of this progression is the mirror system for grasping and its extension to permit imitation. Imitation is seen as evolving via a so-called simple system such as that found in chimpanzees (which allows imitation of complex "object-oriented" sequences but only as the result of extensive practice) to a so-called complex system found in humans (which allows rapid imitation even of complex sequences, under appropriate conditions) which supports pantomime. This is hypothesized to have provided the substrate for the development of protosign, a combinatorially open repertoire of manual gestures, which then provides the scaffolding for the emergence of protospeech (which thus owes little to nonhuman vocalizations), with protosign and protospeech then developing in an expanding spiral. It is argued that these stages involve biological evolution of both brain and body. By contrast, it is argued that the progression from protosign and protospeech to languages with full-blown syntax and compositional semantics was a historical phenomenon in the development of Homo sapiens, involving few if any further biological changes.  相似文献   
13.
14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号