首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20497篇
  免费   11篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   7篇
  2018年   3489篇
  2017年   2817篇
  2016年   2247篇
  2015年   191篇
  2014年   72篇
  2013年   96篇
  2012年   565篇
  2011年   2381篇
  2010年   2514篇
  2009年   1469篇
  2008年   1708篇
  2007年   2173篇
  2006年   27篇
  2005年   210篇
  2004年   167篇
  2003年   111篇
  2002年   64篇
  2001年   31篇
  2000年   52篇
  1999年   13篇
  1998年   21篇
  1997年   18篇
  1996年   8篇
  1994年   2篇
  1990年   7篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
  1973年   2篇
  1971年   2篇
  1970年   1篇
  1969年   3篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1960年   1篇
  1959年   1篇
  1958年   2篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
12.
13.
14.
15.
16.
17.
18.
19.
Humans and monkeys show intermittent arm movements while tracking moving targets. This intermittency has been explained by postulating either a psychological refractory period after each movement and/or an error deadzone, an area surrounding the target within which movements are not initiated. We present a technique to detect and quantify the size of this deadzone, using a compensatory tracking paradigm that distinguishes it from a psychological refractory period. An artificial deadzone of variable size was added around a visual target displayed on a computer screen. While the subject was within this area, he received visual feedback that showed him to be directly on target. The presence of this artificial deadzone could affect tracking performance only if it exceeded the size of his intrinsic deadzone. Therefore, the size of artificial deadzone at which performance began to be affected revealed the size of the intrinsic deadzone. Measured at the subjects' eye, the deadzone was found to vary between 0.06 and 0.38 degrees, depending on the tracking task and viewing conditions; on the screen, this range was 1.3 mm to 3.3 mm. It increased with increasing speed of the target, with increasing viewing distance, and when the amplitude of the movement required was reduced. However, the deadzone size was not significantly correlated with the subjects' level of performance. We conclude that an intrinsic deadzone exists during compensatory tracking, and we suggest that its size is set by a cognitive process not simply related to the difficulty of the tracking task.  相似文献   
20.
The purpose of this study was to determine whether backward walking represented a simple temporal reversal of forward walking and, hence, could be controlled by a reversed cycling of the same group of neurons. Electromyographic (EMG), joint angle, joint moment, and joint muscle power patterns were compared for forward and backward walking, in 6 subjects. The joint angle patterns with the time-base of the backward walking reversed were similar, with the exception of the ankle. The moment patterns were similar except for the knee, whereas the joint muscle powers were almost reversed-polarity images of each other. This suggests that somewhat similar muscle activation patterns could be used to produce both modes of locomotion, but the temporal cycling of muscle contraction would be reversed: Concentric muscle activity in forward walking would become eccentric activity in backward walking, and visa versa. The EMG results generally supported these findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号