首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   1篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   11篇
  2007年   10篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   8篇
  2001年   9篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   6篇
  1996年   5篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1938年   1篇
排序方式: 共有105条查询结果,搜索用时 189 毫秒
31.
Children using cochlear implants (CIs) develop speech perception but have difficulty perceiving complex acoustic signals. Mode and tempo are the two components used to recognize emotion in music. Based on CI limitations, we hypothesized children using CIs would have impaired perception of mode cues relative to their normal hearing peers and would rely more heavily on tempo cues to distinguish happy from sad music. Study participants were children with 13 right CIs and 3 left CIs (M = 12.7, SD = 2.6 years) and 16 normal hearing peers. Participants judged 96 brief piano excerpts from the classical genre as happy or sad in a forced-choice task. Music was randomly presented with alterations of transposed mode, tempo, or both. When music was presented in original form, children using CIs discriminated between happy and sad music with accuracy well above chance levels (87.5%) but significantly below those with normal hearing (98%). The CI group primarily used tempo cues, whereas normal hearing children relied more on mode cues. Transposing both mode and tempo cues in the same musical excerpt obliterated cues to emotion for both groups. Children using CIs showed significantly slower response times across all conditions. Children using CIs use tempo cues to discriminate happy versus sad music reflecting a very different hearing strategy than their normal hearing peers. Slower reaction times by children using CIs indicate that they found the task more difficult and support the possibility that they require different strategies to process emotion in music than normal.  相似文献   
32.
The present study describes a tactual object matching task based on the study of Lederman and Klatzky (1987) for the dimensions Exact shape, Weight, Volume and Texture. Participants were congenitally blind children and their sighted classmates, congenitally blind adults and sighted adults. To study a possible effect of familiarity the task was performed four times. Based on Millar's CAPIN (Convergent Active Processes in Interrelated Networks) model of spatial processing (Millar, 1994) it was thought that this manipulation would add redundant information to the experiment from which the children and blind participants could benefit. The results showed that accuracy was affected more by age than visual status, especially for the dimension Exact Shape. With regard to response times, children were in most cases faster than adults, especially the sighted adults. Familiarization had a significant effect on response times for all dimensions. Extra exercise only increased accuracy for the dimension Texture. These results were generally in line with the CAPIN model.  相似文献   
33.
Visually, a red item is easily detected among green items, whereas a mirrored S among normal Ss is not. In visual search, the former is known as the pop-out effect. In daily life, people often also conduct haptic (tactual) searches, for instance, when trying to find keys in their pocket. The aim of the present research was to determine whether there is a haptic version of the pop-out effect. Blindfolded subjects had to search for a target item which differed in roughness from the surrounding distractor items. We report reaction time slopes as low as 20 ms/item. When target and distractor identities were interchanged the slopes increased indicating a search asymmetry. Furthermore, we show that differences in search slope were accompanied by search strategy differences. In some conditions a single-hand sweep over the display was sufficient, while in others a more detailed search strategy was used. By relating haptic search slopes to parallel and serial search strategies we show, for the first time, that pop-out effects occur under free manual exploration.  相似文献   
34.
At room temperature, some materials feel colder than others due to differences in thermal conductivity, heat capacity and geometry. When the ambient temperature is well above skin temperature, the roles of ‘cold’ and ‘warm’ materials are reversed. In this paper, this effect is quantified by measuring discrimination thresholds for subjective coldness at different ambient temperatures using stimuli of different thicknesses. The reversal point was found to be at 34 °C, somewhat above skin temperature. At this reversal point, discrimination is quite impossible. At room temperature, subjects were able to discriminate between stimuli of different thickness based on subjective coldness, showing that the sense of touch, unlike vision, can penetrate solid objects. Furthermore, somewhat surprisingly, at ambient temperatures well below normal room temperature, discrimination is worse than at room temperature.  相似文献   
35.
Early-blind, late-blind, and blindfolded sighted participants were presented with two haptic allocentric spatial tasks: a parallel-setting task, in an immediate and a 10-sec delay condition, and a task in which the orientation of a single bar was judged verbally. With respect to deviation size, the data suggest that mental visual processing filled a beneficial role in both tasks. In the parallel-setting task, the early blind performed more variably and showed no improvement with delay, whereas the late blind did improve, but less than the sighted did. In the verbal judgment task, both early- and late-blind participants displayed larger deviations than the sighted controls. Differences between the groups were absent or much weaker with respect to the haptic oblique effect, a finding that reinforces the view that this effect is not of visual origin. The role of visual processing mechanisms and visual experience in haptic spatial tasks is discussed.  相似文献   
36.
Optical space differs from physical space. The structure of optical space has generally been assumed to be metrical. In contradistinction, we do not assume any metric, but only incidence relations (i.e., we assume that optical points and lines exist and that two points define a unique line, and two lines a unique point). (The incidence relations have generally been assumed implicitly by earlier authors.) The condition that makes such anincidence structure into a projective space is the Pappus condition. The Pappus condition describes a projective relation between three collinear triples of points, whose validity can— in principle—be verified empirically. The Pappus condition is a necessary condition for optical space to be a homogeneous space (Lobatchevski hyperbolic or Riemann elliptic space) as assumed by, for example, the well-known Luneburg theory. We test the Pappus condition in a full-cue situation (open field, broad daylight, distances of up to 20 m, visual fields of up to 160° diameter). We found that although optical space is definitely not veridical, even under full-cue conditions, violations of the Pappus condition are the exception. Apparently optical space is not totally different from a homogeneous space, although it is in no way close to Euclidean.  相似文献   
37.
Shape is an important cue for recognizing an object by touch. Several features, such as edges, curvature, surface area, and aspect ratio, are associated with 3-D shape. To investigate the saliency of 3-D shape features, we developed a haptic search task. The target and distractor items consisted of shapes (cube, sphere, tetrahedron, cylinder, and ellipsoid) that differed in several of these features. Exploratory movements were left as unconstrained as possible. Our results show that this type of haptic search task can be performed very efficiently (25 msec/item) and that edges and vertices are the most salient features. Furthermore, very salient local features, such as edges, can also be perceived through enclosure, an exploratory procedure usually associated with global shape. Since the subjects had to answer as quickly as possible, this suggests that speed may be a factor in selecting the appropriate exploratory procedure.  相似文献   
38.
In two experiments, the active haptic identification of three-dimensional mathematically welldefined objects is investigated. The objects, quadric surfaces, are defined in terms of the shape index, a quantity describing the shape, and curvedness, a quantity describing overall curvature. Both shape index and curvedness are found to have a significant influence on haptic shape identification . Concave surfaces lead to a larger spread in responses than convex ones. Hyperbolic surfaces show a slight tendency to be identified with more difficulty than elliptic ones. Surfaces with a high curvedness are identified more easily than those with a low curvedness. Results from experiments with constant and with random curvedness are indistinguishable . It is concluded that shape index and curvedness are psychophysically not confounded.  相似文献   
39.
We asked subjects to match points on the surface of a smooth three-dimensional (3-D) shape with points on the surface of another object that was geometrically identical to the first object but was placed in a different pose, was differently textured, and was differently shaded. In all cases, the fiducial point was on the rim of one of the objects (i.e., the boundary of the visible region of the surface), whereas the matching point was well within the silhouette of the other object. This allowed us to draw (preliminary) conclusions concerning the way monocular human observers are able to handle the neighborhood of the rim, where the local slant assumes arbitrarily high values. All experiments were done in real space with real objects (no computer-simulated scenes), the points being indicated with laser beam illumination. The subject was given control over the direction of the laser beams and was thus able to perform the task by adjustment from the vantage position. We studied both consistency (whether the subject’s judgments were invariant against changes of relative pose) and veridicality (whether the depth of the visual contour as calculated from the settings agreed with the true distance as measured by mechanical means). Subjects caught much of the 3-D structure of the contour but did deviate appreciably and apparently idiosyncratically from the true geometry.  相似文献   
40.
We investigated the extent to which the human visual system can detect discontinuities in firstorder optical flow fields. We constructed two types of spatial discontinuities: a circular split field with a straight edge and a disk with annular surround. We used two different first-order optical flow components: an expansion and a rotation. We found an intriguing difference in the detection thresholds for straight and circular discontinuities. Whereas straight discontinuities yielded thresholds of 10%— 50% difference in expansion or rotation, circular discontinuities could, at first, only be detected at extreme differences (>>100%). After a learning period, thresholds for such stimuli decreased, but they remained significantly higher than thresholds for the straight edge. Thresholds rose for stimuli that formed a gradual transition between a circular and a straight edge, and they decreased with increasing eccentricity of the circular discontinuity. Results suggest that symmetry in the stimulus, defined by the coincidence of the center of expansion or rotation and the center of the circular discontinuity, was responsible for the difference in thresholds for circular and straight discontinuities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号