首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N J Wade 《Perception》1975,4(1):85-95
The temporal characteristics of binocular and monocular rivalry between orthogonal gratings of the same or complementary colours were investigated. Rivalry was measured in terms of the dominance of either grating or the visibility of composites comprised of parts of both gratings. The total duration for which either grating was dominant was significantly longer in binocular rivalry between gratings of complementary colours. A comparison of binocular and monocular rivalry indicated considerable phenomenal differences between them. Dominance in binocular rivalry corresponds to the visibility of one grating alone; this occurs rarely in monocular rivalry, which is characterized by fluctuations in the distinctiveness of the gratings. The changes in distinctiveness are influenced by colour in a similar manner to that in binocular rivalry, and the frequencies of fluctuations are higher for gratings of complementary colours.  相似文献   

2.
The effects of binocular and monocular viewing on spatial and temporal errors in one-handed catching were investigated in two experiments. The first experiment-using expert catchers-recorded more spatial errors under the monocular than under the binocular condition. No significant differences in the number of temporal errors were apparent. In a second experiment, which paradigm, relatively poor catchers were trained under both vision conditions. Its objective was to investigate whether the superior results obtained under the binocular condition in the first experiment, for the number of catches and number of spatial errors, could be attributed simply to the fact that subjects had more experience with binocular than monocular viewing. The following results occurred after a period of training (a) a significant reduction in the number of spatial errors under the monocular condition, reaching a level similar to that under the binocular condition; (b) no significant reduction in the number of spatial errors when subjects transferred from monocular to binocular viewing, and significantly more spatial errors when subjects transferred from binocular to monocular viewing; and (c) a training-sequence effect. The latter effect indicates that subjects had more benefit from training in the sequence monocular-binocular than vice versa. These findings are discussed in the context of the strategies of specificity of learning and use of multisources.  相似文献   

3.
A neural theory of binocular rivalry   总被引:10,自引:0,他引:10  
When the two eyes view discrepant monocular stimuli, stable single vision gives way to alternating periods of monocular dominance; this is the well-known but little understood phenomenon of binocular rivalry. This article develops a neural theory of binocular rivalry that treats the phenomenon as the default outcome when binocular correspondence cannot be established. The theory posits the existence of monocular and binocular neurons arrayed within a functional processing module, with monocular neurons playing a crucial role in signaling the stimulus conditions instigating rivalry and generating inhibitory signals to implement suppression. Suppression is conceived as a local process happening in parallel over the entire cortical representation of the binocular visual field. The strength of inhibition causing suppression is related to the size of the pool of monocular neurons innervated by the suppressed eye, and the duration of a suppression phase is attributed to the strength of excitation generated by the suppressed stimulus. The theory is compared with three other contemporary theories of binocular rivalry. The article closes with a discussion of some of the unresolved problems related to the theory.  相似文献   

4.
We tested shape constancy from novel views in the case of binocular viewing, using a variety of stimuli, including polyhedra, polygonal lines, and points in 3-D. The results of the psychophysical experiments show that constraints such as planarity of surface contours and symmetry are critical for reliable shape constancy. These results are consistent with the results obtained in our previous psychophysical experiments on shape constancy from novel views in the presence of a kinetic depth effect (Pizlo & Stevenson, 1999). On the basis of these results, we developed a new model of binocular shape reconstruction. The model is based on the assumption that binocular reconstruction is a difficult inverse problem, whose solution requires imposing a priori constraints on the family of possible interpretations. In the model, binocular disparity is used to correct monocularly reconstructed shape. The new model was tested on the same shapes as those used in the psychophysical experiments. The reconstructions produced by this model are substantially more reliable than the reconstructions produced by models that do not use constraints. Interestingly, monocular (but not binocular) reconstructions produced by this model correlate well with both monocular and binocular performance of human subjects. This fact suggests that binocular and monocular reconstructions of shapes in the human visual system involve similar mechanisms based on monocular shape constraints.  相似文献   

5.
《Brain and cognition》2006,60(3):287-291
A rather consistent finding in studies of perceived (imagined) compared to actual movement in a reaching paradigm is the tendency to overestimate at midline. Explanations of such behavior have focused primarily on perceptions of postural constraints and the notion that individuals calibrate reachability in reference to multiple degrees of freedom, also known as the whole-body explanation. The present study examined the role of visual information in the form of binocular and monocular cues in perceived reachability. Right-handed participants judged the reachability of visual targets at midline with both eyes open, dominant eye occluded, and the non-dominant eye covered. Results indicated that participants were relatively accurate with condition responses not being significantly different in regard to total error. Analysis of the direction of error (mean bias) revealed effective accuracy across conditions with only a marginal distinction between monocular and binocular conditions. Therefore, within the task conditions of this experiment, it appears that binocular and monocular cues provide sufficient visual information for effective judgments of perceived reach at midline.  相似文献   

6.
A rather consistent finding in studies of perceived (imagined) compared to actual movement in a reaching paradigm is the tendency to overestimate at midline. Explanations of such behavior have focused primarily on perceptions of postural constraints and the notion that individuals calibrate reachability in reference to multiple degrees of freedom, also known as the whole-body explanation. The present study examined the role of visual information in the form of binocular and monocular cues in perceived reachability. Right-handed participants judged the reachability of visual targets at midline with both eyes open, dominant eye occluded, and the non-dominant eye covered. Results indicated that participants were relatively accurate with condition responses not being significantly different in regard to total error. Analysis of the direction of error (mean bias) revealed effective accuracy across conditions with only a marginal distinction between monocular and binocular conditions. Therefore, within the task conditions of this experiment, it appears that binocular and monocular cues provide sufficient visual information for effective judgments of perceived reach at midline.  相似文献   

7.
An investigation was made of stimulus factors causing retinal rivalry or allowing stereoscopic depth perception, given a requisite positional disparity. It is shown that similar colour information can be “filtered” out from both eyes; that stereopsis is not incompatible with rivalry and suppression of one aspect of the stimulus, and that the strongest cue for perception of stereoscopic depth is intensity difference at the boundaries of the figures in the same direction at each eye. Identity of colour can also act as a cue for stereopsis. The brightness of different monocular figures seen in the stereoscope in different combinations was estimated by a matching technique, and it is suggested that the perceived brightness is a compromise between the monocular brightness difference between figure and ground seen in relation to the binocular fused background, and the mean brightness of the figures. The results are discussed in terms of neurophysiological “on,” “off” and continuous response fibres.  相似文献   

8.
We studied monocular and binocular detection of foveal flashes of different contrast. When background contours were binocularly fused, detectability (d’) of binocular test flashes was, on the average, twice the detectability of monocularly presented flashes. The precise amount of binocular advantage varied with test contrast: binocular improvement exceeded full summation for low test contrast, but fell below full summation at higher test contrasts. In the absence of contours in one eye, background luminances are not expected to sum, yet binocular detection is an average of 41.5% better than monocular detection. This indicates a difference in the functional organization of the fused binocular channel and a monocular channel.  相似文献   

9.
Illusory depth perception experienced in driving simulators is afforded by monocular depth information contained in visual displays. Presumably binocular convergence and binocular disparity, though useful for depth perception in real environments, may poorly contribute to illusory depth in a driving simulator. Instead, they may generate conflicting information by revealing the distance of the display screen and its flatness. Nevertheless, illusory depth induced by monocular information contained in visual displays usually produces enough immersion and realism to create the illusion of driving in a real environment.

Many authors have noted improved depth perception in paintings, photographs, and even in drawings when viewed monocularly. However, this effect, known as monocular advantage, has never been explored in driving simulation. The purpose of this experiment was to assess whether the effect might exist in driving simulation. It was expected that drivers would perceive distances in depth better and more accurately with a monocular than with a binocular viewing of the display. Distance estimates were evaluated for two types of driving maneuvers referred to as alignment and bisection. Results showed that when significant performance differences between monocular and binocular viewing conditions occurred, target cars were perceived farther in depth and more accurately using monocular vision.

Alternative viewing conditions using both eyes are discussed at the end of the article.  相似文献   

10.
M Gur 《Perception》1991,20(5):645-654
The conviction that time-varying signals are essential for normal visual perception was recently challenged by Bolanowski and Doty who observed that no 'blankouts' occurred in the binocularly viewed Ganzfeld. They suggested that monocularly perceived fading is caused by the eye in darkness suppressing the non-Ganzfeld-viewing eye. In the present paper, fade-out perception under monocular and binocular Ganzfeld viewing is compared, and the effect of the free eye on the Ganzfeld-viewing eye is tested directly. Results show that fading takes place under both monocular and binocular viewing. The data reenforce the view that transient inputs are necessary for maintaining visual perception. It is also shown that there are two Ganzfeld-related phenomena--fade-out and blackout. Fade-out, a slow gradual loss of brightness and of saturation perception, is observed by all subjects under both monocular and binocular viewing, and is affected by the light intensity and wavelength. It is probably retinal in origin. Blackout, a brief intermittent loss of all visual sensation, is experienced by some subjects in the monocular Ganzfeld only and is not appreciably affected by the light intensity or wavelength. It may be caused by a central blocking of all input to the perceiving stage.  相似文献   

11.
The authors investigated the integration of alternate disparate monocular inputs for binocular perception in 1-handed catching experiments (N = 14, 32, 22, and 15 participants, respectively in Experiments 1-4). They varied the no-vision interval between alternate monocular samples to measure catching performance, and they compared the alternating monocular conditions with binocular and monocular conditions with equal no-vision intervals. They found no evidence of a binocular advantage for one-handed catching in the alternating monocular conditions. Performance in monocular and alternating monocular conditions did not differ across no-vision intervals ranging from 0-80 ms and was particularly worse than performance in binocular viewing conditions when the no-vision interval was 40 ms or more. The authors argue that the dissimilarity between disparate monocular inputs created by the approaching object limited the integration of those inputs and subsequent binocular perception.  相似文献   

12.
The authors investigated the integration of alternate disparate monocular inputs for binocular perception in 1-handed catching experiments (N = 14, 32, 22, and 15 participants, respectively in Experiments 1-4). They varied the no-vision interval between alternate monocular samples to measure catching performance, and they compared the alternating monocular conditions with binocular and monocular conditions with equal no-vision intervals. They found no evidence of a binocular advantage for one-handed catching in the alternating monocular conditions. Performance in monocular and alternating monocular conditions did not differ across no-vision intervals ranging from 0-80 ms and was particularly worse than performance in binocular viewing conditions when the no-vision interval was 40 ms or more. The authors argue that the dissimilarity between disparate monocular inputs created by the approaching object limited the integration of those inputs and subsequent binocular perception.  相似文献   

13.
The perception of distance and size in the presence of optical gradient information was investigated under four viewing conditions—binocular view with and without head motion, and monocular view with and without head motion. Subjects (60 adults) matched distance intervals (from 15 to 127 cm) and heights of a target triangle (from 5 to 15 cm) by adjusting the length of a metal tape. Both linear and power functions were fitted to each individual’s distance judgments, and the competing perceptual models were compared. For both models, it was found that binocular information was sufficient to specify relative, but not absolute, distance, that monocular information was sufficient to specify an orderly relation between target distance and judgment but not absolute distance, that average error was less in the binocular conditions, and that perceived distance was not affected in either condition by the addition of head motion. The analysis of size judgments revealed that monocular and binocular judgments did not differ, that matches made with and without head motion did not differ, and that, in all conditions, matches exceeded target heights by an average 30% to 40%. Judged size was also analyzed as a function of target distance. In all conditions but monocular view with head motion, the effect of distance was to increase size judgments. The distance judgments support the hypothesis (Purdy, 1958) that the binocular stimulus carries information that the monocular stimulus does not; they fail to support the hypothesis (Gibson, 1966) that observer motion adds information to the static stimulus. The size judgments support neither hypothesis but suggest an independence of perceived size from perceived distance.  相似文献   

14.
To examine sensitivity to pictorial depth cues in young infants (4 and 5 months-of-age), we compared monocular and binocular preferential looking to a display on which two faces were equidistantly presented and one was larger than the other, depicting depth from the size of human faces. Because human faces vary little in size, the correlation between retinal size and distance can provide depth information. As a result, adults perceive a larger face as closer than a smaller one. Although binocular information for depth provided information that the faces in our display were equidistant, under monocular viewing, no such information was provided. Rather, the size of the faces indicated that one was closer than the other. Infants are known to look longer at apparently closer objects. Therefore, we hypothesized that infants would look longer at a larger face in the monocular than in the binocular condition if they perceived depth from the size of human faces. Because the displays were identical in the two conditions, any difference in looking-behavior between monocular and binocular viewing indicated sensitivity to depth information. Results showed that 5-month-old infants preferred the larger, apparently closer, face in the monocular condition compared to the binocular condition when static displays were presented. In addition, when presented with a dynamic display, 4-month-old infants showed a stronger ‘closer’ preference in the monocular condition compared to the binocular condition. This was not the case when the faces were inverted. These results suggest that even 4-month-old infants respond to depth information from a depth cue that may require learning, the size of faces.  相似文献   

15.
An experiment was performed to ascertain whether a particular member of the class of sequential processing models (Estes & Taylor, 1964; Townsend, 1966) should be further developed in terms of the contributions of information from the separate eyes. Using the detection paradigm (Estes & Taylor, 1964), nine Ss were each run 576 trials under each of three viewing conditions: (a) monocular left, (b) monocular right, and (c) binocular, after four days of practice and calibration. The serial processing model was used to make predictions for three possible cases of binocular information summation: (a) complete independence of the monocular channels, (b) partial independence of the monocular channels and (c) complete dependence in the monocular channels. Complete dependence provided the best fit to the data with a possible stress on use of a “best” eye, but a marginal level of significance was obtained between a simple average of monocular performance and binocular performance with transformed scores. Thus, although there seems to be little or no information summation in terms of the present model of multi-symbol perception, follow-up experiments were suggested to further delineate monocular-binocular relationships in the detection paradigm.  相似文献   

16.
This study was designed to explore the limitations of tau (τ) as an explanatory construct for the timing of interceptive action. This was achieved by examining the effects of environmental structure and binocular vision on the timing of the grasp in a simple one-handed catch. In two experiments, subjects were required to catch luminous balls of different diameters (4, 6, 8 and 10 cm) in a completely darkened room. In the first experiment the influence of the presence vs. absence of an environmental background structure (both under monocular viewing) was tested, and in the second experiment the influence of monocular vs. binocular vision was examined. It was found that irrespective of the presence of environmental structure, an effect of ball size occurred in the monocular viewing conditions. That is, in monocular viewing conditions the grasp was initiated and completed earlier for the larger balls as compared to the smaller ones, while in the binocular viewing condition subjects behaved in accordance with a constant time to contact strategy: no effects of ball size were found. It is concluded that under binocular viewing a binocular information source is used, while in the monocular viewing condition a lower order information source like image size or image velocity is probably involved.  相似文献   

17.
We report a cross-sectional and a longitudinal experiment that examined developmental changes in the relative contribution of monocular and binocular variables in the guidance of interceptive arm movements. Three- to eight-month-old infants were observed while presented with differently sized balls that approached frontally with a constant velocity under both monocular and binocular viewing conditions. Movement onset indicated that with age infants increasingly came to rely on binocular variables in controlling the timing of the interceptive arm movements. That is, from 7 to 8 months of age movement onset was independent from object size under binocular but not under monocular viewing. In contrast, binocular viewing enhanced the spatial accuracy of the interceptive arm movements at all ages. We concluded that attunement to binocular information is a key process in infants' gaining adaptive control of goal-directed arm movements. However, interceptive arm movements entail the formation of multiple on-line couplings between optic and movement variables, each of which appears to develop at its own pace.  相似文献   

18.
Prolonged viewing of bright vertical (horizontal) gratings alternating with dim horizontal (vertical) gratings generates negative brightness aftereffects that are contingent on the orientation of orthogonal test gratings. The effect is measured by a brightness cancellation technique, similar to the color cancellation technique used in measuring McCollough effects. Like the latter, brightness aftereffects appear to persist for long periods. The magnitude of these aftereffects is a positive monotonic function of the luminance difference between the inducing gratings, and it depends on the conditions of induction; monocular induction generates larger aftereffects than binocular induction does. The aftereffect transfers interocularly, although its magnitude in the contralateral eye is substantially attenuated; binocular measurement, following monocular induction, results in even smaller aftereffects. An attempt to understand these findings within the computational model of brightness perception developed by Grossberg and Mingolla (1985a, 1985b) is presented.  相似文献   

19.
Lee, Young, Reddish, Lough, and Clayton (1983) reported that the timing control of jumping and vertically punching a dropping ball exploits the inverse of the rate of change of optical expansion, τ(r). We raise a number of methodological and logical criticisms against their experiment and conclusions and attempt to rectify them by examining elbow joint angles only,in seated punchers, under both monocular and binocular conditions, with two ball sizes, dropped from two heights. Differences between the binocular and monocular cases suggest the exploitation of different information. We present several techniques to help determine the operative variable(s) controlling the action. The optical variable used to initiate and guide flexion appeared to be expansion velocity (looming), rather than τ(r); extension appeared to be under the control of different variables in the monocular and binocular cases. Simulations using single variables and single perceptuo-motor intervals were of mixed success.  相似文献   

20.
To determine if binocular summation occurs when increment flashes are of equal energy (Bloch’s law) but unequal in luminance-duration parameters, three Ss made temporal forced-choice judgments: (1) monocularly, (2) binocularly when the flashes to each eye were identical, (3) binocularly when the flashes to each eye were of equal energy but different in terms of their luminance and duration parameters, and (4) binocularly when flashes to each eye were separated by 100 msec. Binocular detection rates were consistently superior to monocular detection rates. Similarity in performance between Conditions 2 and 3 indicates that the binocular visual system responds only to the total energy of each monocular flash. The data from two Ss reveal that binocular performance was greater than that predicted on the basis of probability summation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号