首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Terminal target-pointing error on the 1st trial of exposure to optical displacement is usually less than is expected from the optical displacement magnitude. The authors confirmed 1st-trial adaptation in the task of pointing toward optically displaced targets while visual feedback was delayed until movement completion. Measurement of head-shoulder posture while participants (N = 24) viewed the optically displaced field revealed that their shoulders felt turned in the direction opposite to the displacement (visual capture), accounting for all but about 4% to 10% of 1st-trial adaptation. First-trial adaptation was unrelated to realignment aftereffects. First-trial adaptation is largely an artifact of the asymmetry of the structured visual field produced by optical displacement, which induces a felt body rotation, thereby reducing the effective optical displacement.  相似文献   

2.
Terminal target-pointing error on the 1st trial of exposure to optical displacement is usually less than that expected from the optical displacement magnitude. Such 1st trial adaptation was confirmed in 2 experiments (N = 48 students in each) comparing pointing toward optically displaced targets and toward equivalent physically displaced targets (no optical displacement), with visual feedback delayed until movement completion. First-trial performance could not be explained by ordinary target undershoot, online correction, or reverse optic flow information about true target position and was unrelated to realignment aftereffects. Such adaptation might be an artifact of the asymmetry of the structured visual field produced by optical displacement, which induces a felt head rotation opposite to the direction of the displacement, thereby reducing the effective optical displacement.  相似文献   

3.
Terminal target-pointing error on the 1st trial of exposure to optical displacement is usually less than that expected from the optical displacement magnitude. Such 1st trial adaptation was confirmed in 2 experiments (N = 48 students in each) comparing pointing toward optically displaced targets and toward equivalent physically displaced targets (no optical displacement), with visual feedback delayed until movement completion. First-trial performance could not be explained by ordinary target undershoot, online correction, or reverse optic flow information about true target position and was unrelated to realignment aftereffects. Such adaptation might be an artifact of the asymmetry of the structured visual field produced by optical displacement, which induces a felt head rotation opposite to the direction of the displacement, thereby reducing the effective optical displacement.  相似文献   

4.
What is the relationship between visual perception and visual mental imagery of emotional faces? We investigated this question using a within-emotion perceptual adaptation paradigm in which adaptation to a strong version of an expression was paired with a test face displaying a weak version of the same emotion category. We predicted that within-emotion adaptation to perception and imagery of expressions would generate similar aftereffects, biasing perception of weak emotional test faces toward a more neutral value. Our findings confirmed this prediction. Adaptation to mental images yielded aftereffects that inhibited emotion recognition of test expressions, as participants were less accurate at recognising these stimuli compared to baseline. While the same inhibitory effect was observed when expressions were visually perceived, the size of the aftereffects was greater for perception than imagery. These findings suggest the existence of expression-selective neural mechanisms that subserve both visual perception and visual mental imagery of emotional faces.  相似文献   

5.
The amount by which target pointing enhances prism adaptation (the “target-pointing effect”) was examined as a function of exposure trials. Each S served in three conditions—target-pointing, no-target, and control—wearing 20-diopter prism goggles in the first two. The S was measured prior to the exposure period on target-pointing accuracy with normal vision but with no visual feedback regarding his performance. Similar measures were taken after the 5th, 10th, 15th, 25th, 35th, 55th, and 95th exposure trials and after each of two consecutive 5-min postexposure periods in the dark. The two experimental conditions led to sharply rising and negatively accelerated adaptation (“negative aftereffect”) curves, the asymptotes of which differed markedly, in favor of the target-pointing condition. This difference in asymptotes indicates that the target-pointing effect is not limited to the early portion of the exposure period but, instead, is a relatively permanent phenomenon. There was no decline in adaptation during the postexposure period.  相似文献   

6.
Many studies have used visual adaptation to investigate how recent experience with faces influences perception. While faces similar to those seen during adaptation phases are typically perceived as more 'normal' after adaptation, it is possible to induce aftereffects in one direction for one category (e.g. female) and simultaneously induce aftereffects in the opposite direction for another category (e.g. male). Such aftereffects could reflect 'category-contingent' adaptation of neurons selective for perceptual category (e.g. male or female) or 'structure-contingent' adaptation of lower-level neurons coding the physical characteristics of different face patterns. We compared these explanations by testing for simultaneous opposite after effects following adaptation to (a) two groups of faces from distinct sex categories (male and female) or (b) two groups of faces from the same sex category (female and hyper-female) where the structural differences between the female and hyper-female groups were mathematically identical to those between male and female groups. We were able to induce opposite aftereffects following adaptation between sex categories but not after adaptation within a sex category. These findings indicate the involvement of neurons coding perceptual category in sex-contingent face aftereffects and cannot be explained by neurons coding only the physical aspects of face patterns.  相似文献   

7.
Three experiments employing the McCollough paradigm were conducted to determine the spatial-frequency content of visual imagery. In Experiment 1, large and reliable pattern-contingent color aftereffects were obtained after adaptation to visual imagery. The direction of the aftereffects indicated that subjects were adapting to higher spatial frequencies in their imagery. These results contrast with the data of Experiment 2, which demonstrate that color aftereffects obtained with adaptation to physically present stimuli are mediated by the fundamental spatial frequency components. The magnitude of the imagery-induced aftereffects in Experiment 1 equaled the magnitude of the externally induced aftereffects obtained in Experiment 2 with the same subjects. By blurring the to-be-imaged patterns (Experiment 3), the fundamental Fourier components became the salient perceptual features of the stimuli, and the direction of the imagery-induced aftereffects was reversed from that of Experiment 1, indicating that the spatial frequency content of the imagery had changed from higher to lower frequencies. Under normal viewing conditions, subjects use the higher spatial frequencies associated with the perceptually salient edges of stimuli to construct their images. The results of Experiments 1 and 3 are discussed in light of a current controversy over the nature of information representation in imagery, and it is concluded that support has been obtained for the analog model of visual imagery.  相似文献   

8.
Face identity aftereffects are significantly diminished in children with autism relative to typical children, which may reflect reduced perceptual updating with experience. Here, we investigated whether this atypicality also extends to non‐face stimulus categories, which might signal a pervasive visual processing difference in individuals with autism. We used a figural aftereffect task to measure directly perceptual updating following exposure to distorted upright faces, inverted faces and cars, in typical children and children with autism. A size‐change between study and test stimuli limited the likelihood that any processing atypicalities reflected group differences in adaptation to low‐level features of the stimuli. Results indicated that, relative to typical children, figural aftereffects for upright faces, but not inverted faces or cars, were significantly attenuated in children with autism. Moreover, the group difference was amplified when we isolated the ‘face‐selective’ component of the aftereffect, by partialling out the mid‐level shape adaptation common to upright and inverted face stimuli. Notably, the aftereffects of typical children were disproportionately larger for upright faces than for inverted faces and cars, but the magnitude of aftereffects of autistic children was not similarly modulated according to stimulus category. These findings are inconsistent with a pervasive adaptive coding atypicality relative to typical children, and suggest that reduced perceptual updating may constitute a high‐level, and possibly face‐selective, visual processing difference in children with autism.  相似文献   

9.
Previous research on visual contingent aftereffects has been concerned with examining the effects of various parameters (e.g., spatial frequency and luminance) on the adaptation to, and decay of, contingent aftereffects. The current study tested the viability of using visual contingent aftereffects in a display context. Using established characteristics of contingent aftereffects, a program of contingent aftereffect adaptation was designed. Studies were conducted to determine if subjects who were adapted to see visual contingent aftereffects invoked by a visual display could achieve more rapid or certain identification of a display under low luminance conditions. The results confirmed (a) that contingent aftereffects can improve performance on a visual discrimination task requiring information from a display and (b) that contingent aftereffects are more enhanced at low levels of illumination.  相似文献   

10.
Visual adaptation is known to bias perception away from the properties of the adapting stimuli, toward opposite properties, resulting in perceptual aftereffects. For example, prolonged exposure to a face has been shown to produce an identity aftereffect, biasing perception of a subsequent face toward the opposite identity. Such repulsive aftereffects have been observed for both visually perceived and visually imagined faces, suggesting that both perception and imagery yield typical aftereffects. However, recent studies have reported opposite patterns of aftereffects for perception and imagery of face gender. In these studies, visually perceived faces produced typical effects in which perception of androgynous faces was biased away from the gender of the adaptor, whereas imagery of the same stimuli produced atypical aftereffects, biasing the perceived gender of androgynous faces toward the gender of the adaptor. These findings are highly unusual and warrant further research. The present study aimed to gather new evidence on the direction of gender aftereffects following perception and imagery of faces. Experiment 1 had participants view and imagine female and male faces of famous and non-famous individuals. To determine the effect of concomitant visual stimulation on imagery and adaptation, participants visualized faces both in the presence and in the absence of a visual input. In Experiment 2, participants were adapted to perceived and imagined faces of famous and non-famous actors matched on gender typicality. This manipulation allowed us to determine the effect of face familiarity on the magnitude of gender aftereffects. Contrary to evidence from previous studies, our results demonstrated that both perception and imagery produced typical aftereffects, biasing the perceived gender of androgynous faces in the opposite direction to the gender of the adaptor. Famous faces yielded largest adaptation effects across tasks. Experiment 2 confirmed that these effects depended on familiarity rather than on sexual dimorphism. In both experiments, this effect was greater for perception than imagery. Additionally, imagery of famous faces produced strongest aftereffects when it was performed in the absence of visual stimulation. The implications of these findings are discussed.  相似文献   

11.
Two experiments with left-handers examined the features of prism adaptation established by previous research with right-handers. Regardless of handedness, (1) rapid adaptation occurs in exposure pointing with developing error in the opposite direction after target achievement, especially with early visual feedback in target pointing; (2) proprioceptive or visual aftereffects are larger, depending on whether visual feedback is available early or late, respectively, in target pointing; (3) the sum of these aftereffects is equal to the total aftereffect for the eye-hand coordination loop; (4) intermanual transfer of visual aftereffects occurs only for the dominant hand; and (5) visual aftereffects are larger in left space when the dominant hand is exposed to leftward displacement. A notable handedness difference is that, while transfer of proprioceptive aftereffects only occurs to the nondominant hand in right-handers, transfer occurs in both directions for left-handers, but regardless of handedness, such transfer only occurs when the exposed hand is tested first after exposure. A discussion then focuses on the implications of these data for a theory of handedness.  相似文献   

12.
The hypothesis that induction of the McCollough effect (spatially selective color aftereffects) entails adaptation of monocularly driven detectors tuned to both spatial and color attributes of the visual stimulus was examined in four experiments. The McCollough effect could not be generated by displaying contour information to one eye and color information to the other eye during inspection, even in the absence of binocular rivalry. Nor was it possible to induce depth-specific color aftereffects following an inspection period during which random-dot stereograms were viewed, with crossed and uncrossed disparity seen in different colored light. Masking and aftereffect in the perception of stereoscopic depth were also nonselective to color; in both cases, perceptual distortion was controlled by stereospatial variables but not by the color relationship between the inspection and test stimuli. The results suggest that binocularly driven spatial detectors in human vision are insensitive to wavelength.  相似文献   

13.
Understanding gait adaptation is essential for rehabilitation, and visual feedback can be used during gait rehabilitation to develop effective gait training. We have previously shown that subjects can adapt spatial aspects of walking to an implicitly imposed distortion of visual feedback of step length. To further investigate the storage benefit of an implicit process engaged in visual feedback distortion, we compared the robustness of aftereffects acquired by visual feedback distortion, versus split-belt treadmill walking. For the visual distortion trial, we implicitly distorted the visual representation of subjects’ gait symmetry, whereas for the split-belt trial, the speed ratio of the two belts was gradually adjusted without visual feedback. After adaptation, the visual feedback or the split-belt perturbation was removed while subjects continued walking, and aftereffects of preserved asymmetric pattern were assessed. We found that subjects trained with visual distortion trial retained aftereffects longest. In response to the larger speed ratio of split-belt walking, the subjects showed an increase in the size of aftereffects compared to the smaller speed ratio, but it steeply decreased over time in all the speed ratios tested. In contrast, the visual distortion group showed much slower decreasing rate of aftereffects, which was evidence of longer storage of an adapted gait pattern. Visual distortion adaptation may involve the interaction and integration of the change in motor strategy and implicit process in sensorimotor adaptation. Although it should be clarified more clearly through further studies, the findings of this study suggest that gait control employs distinct adaptive processes during the visual distortion and split-belt walking and also the level of reliance of an implicit process may be greater in the visual distortion adaptation than the split-belt walking adaptation.  相似文献   

14.
Listening to decreasing sound level leads to an increasing-loudness aftereffect, whereas listening to increasing sound level leads to a decreasing-loudness aftereffect. Measuring the aftereffects by nulling them in short test stimuli reveals that increasing-loudness aftereffects are greater than decreasing-loudness aftereffects. However, this perceptual asymmetry may be due to another illusion--the growing-louder effect: In the absence of any adaptation, short steady stimuli are heard as growing louder. In an experiment in which the duration of test stimuli varied from 1.0 to 2.5 sec, the growing-louder effect did not occur in the longer test stimuli, but the asymmetry in changing-loudness aftereffects remained. The aftereffect asymmetry is therefore independent of the growing-louder effect. The aftereffect asymmetry is consistent with other psychophysical and physiological evidence that is believed to concern potential collision: An approaching sound-source elicits increasing sound level. In addition, the aftereffect asymmetry parallels a well-known asymmetry regarding aftereffects of visual motion, which is also attributed to potential collision.  相似文献   

15.
A period of exposure to trains of simultaneous but spatially offset auditory and visual stimuli can induce a temporary shift in the perception of sound location. This phenomenon, known as the ‘ventriloquist aftereffect’, reflects a realignment of auditory and visual spatial representations such that they approach perceptual alignment despite their physical spatial discordance. Such dynamic changes to sensory representations are likely to underlie the brain’s ability to accommodate inter-sensory discordance produced by sensory errors (particularly in sound localization) and variability in sensory transduction. It is currently unknown, however, whether these plastic changes induced by adaptation to spatially disparate inputs occurs automatically or whether they are dependent on selectively attending to the visual or auditory stimuli. Here, we demonstrate that robust auditory spatial aftereffects can be induced even in the presence of a competing visual stimulus. Importantly, we found that when attention is directed to the competing stimuli, the pattern of aftereffects is altered. These results indicate that attention can modulate the ventriloquist aftereffect.  相似文献   

16.
Body image disturbance – a cause of distress amongst the general population and those diagnosed with various disorders – is often attributed to the media’s unrealistic depiction of ideal bodies. These ideals are strongly gendered, leading to pronounced fat concern amongst females, and a male preoccupation with muscularity. Recent research suggests that visual aftereffects may be fundamental to the misperception of body fat and muscle mass – the perceptual component of body image disturbance. This study sought to establish the influence of gender on these body aftereffects. Male and female observers were randomly assigned to one of four adaptation conditions (low-fat, high-fat, low-muscle, and high-muscle bodies) and were asked to adjust the apparent fat and muscle levels of male and female bodies to make them appear as ‘normal’ as possible both before adaptation and after adaptation. While neither the gender of observers nor of body stimuli had a direct effect, aftereffect magnitude was significantly larger when observers viewed own-gender (compared with other-gender) stimuli. This effect, which may be due to attentional factors, could have implications for the development of body image disturbance, given the preponderance of idealized own-gender bodies in media marketed to male and female consumers.  相似文献   

17.
Sensory adaptation and visual aftereffects have long given insight into the neural codes underlying basic dimensions of visual perception. Recently discovered perceptual adaptation effects for complex shapes like faces can offer similar insight into high-level visual representations. In the experiments reported here, we demonstrated first that face adaptation transfers across a substantial change in viewpoint and that this transfer occurs via processes unlikely to be specific to faces. Next, we probed the visual codes underlying face recognition using face morphs that varied selectively in reflectance or shape. Adaptation to these morphs affected the perception of "opposite" faces both from the same viewpoint and from a different viewpoint. These results are consistent with high-level face representations that pool local shape and reflectance patterns into configurations that specify facial appearance over a range of three-dimensional viewpoints. These findings have implications for computational models of face recognition and for competing neural theories of face and object recognition.  相似文献   

18.
In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa). Auditory aftereffects (i.e., a shift in the psychometric function for unimodal auditory motion perception) were bigger when a visual stimulus moved in the same direction as the sound than when no visual stimulus was presented. When the visual stimulus moved in the opposite direction, aftereffects were reversed and thus became contingent upon visual motion. When visual motion was combined with a stationary sound, no aftereffect was observed. These findings indicate that there are strong perceptual links between the visual and auditory motion-processing systems.  相似文献   

19.
A test was made of the hypothesis that external stimuli present during exposure to lateral displacement of the visual field can serve as situational cues whose presence or absence will influence the magnitude of aftereffects manifested subsequent to adaptation resulting from the exposure. The results indicated that the relative aftereffects were significantly greater when thenondisplacing goggles were worn during the periods in which aftereffect measurements were taken than was the case when they were removed during these test periods. The finding that manipulation of certain cues, i.e., the restriction of the visual field, weight, etc., of the goggles, associated with the adaptation period can in part determine the size of observed aftereffects provides evidence in support of the notion that aftereffects can be conditioned to precisely given constellations of stimuli In addition, the need for caution in conceptualizing aftereffects as simply the persistence of adaptive shifts once visual displacement has been terminated is suggested.  相似文献   

20.
Perceptual adaptation destabilizes the phenomenal appearance of multistable visual displays. Prolonged dominance of a perceptual state fatigues the associated neural population, lowering the likelihood of renewed perception of the same appearance (Nawrot & Blake in Perception & Psychophysics, 49, 230–44, 1991). Here, we used a selective adaptation paradigm to investigate perceptual adaptation for the illusory rotation of ambiguous structure-from-motion (SFM) displays. Specifically, we generated SFM objects with different three-dimensional shapes and presented them in random order, separating successive objects by brief blank periods, which included a mask. To assess the specificity of perceptual adaptation to the shape of SFM objects, we established the probability that a perceived direction of rotation persisted between successive objects of similar or dissimilar shape. We found that the strength of negative aftereffects depended on the volume, but not the shape, of adaptor and probe objects. More voluminous objects were both more effective as adaptor objects and more sensitive as probe objects. Surprisingly, we found these volume effects to be completely independent, since any relationship between two shapes (such as overlap between volumes, similarity of shape, or similarity of velocity profiles) failed to modulate the negative aftereffect. This pattern of results was the opposite of that observed for sensory memory of SFM objects, which reflects similarity between objects, but not volume of individual objects (Pastukhov et al. in Attention, Perception & Psychophysics, 75, 1215–1229, 2013). The disparate specificities of perceptual adaptation and sensory memory for identical SFM objects suggest that the two aftereffects engage distinct neural representations, consistent with recent brain imaging results (Schwiedrzik et al. in Cerebral Cortex, 2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号