首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The verbal/nonverbal account of left and right hemisphere functionality is the prevailing dichotomy describing the cerebral lateralization of function. Yet the fact that the left hemisphere is the superior language processor does not necessarily imply that the right hemisphere is completely lacking linguistic ability. This paper reviews the growing body of research demonstrating that, far from being nonverbal, the right hemisphere has significant language processing strength. From prosodic and paralinguistic aspects of speech production, reception, and interpretation, to prelexical, lexical and postlexical components of visual word recognition; strong involvement of the right hemisphere is implicated. The evidence reviewed challenges the notion that language is solely a function of the “verbal” left hemisphere, indicating that the right cerebral hemisphere makes significant and meaningful contributions to normal language processing as well.  相似文献   

3.
The extent to which orthographic and phonological processes are available during the initial moments of word recognition within each hemisphere is under specified, particularly for the right hemisphere. Few studies have investigated whether each hemisphere uses orthography and phonology under constraints that restrict the viewing time of words and reduce overt phonological demands. The current study used backward masking in the divided visual field paradigm to explore hemisphere differences in the availability of orthographic and phonological word recognition processes. A 20 ms and 60 ms SOA were used to track the time course of how these processes develop during pre-lexical moments of word recognition. Nonword masks varied in similarity to the target words such that there were four types: orthographically and phonologically similar, orthographically but not phonologically similar, phonologically but not orthographically similar and unrelated. The results showed the left hemisphere has access to both orthography and phonology early in the word recognition process. With more time to process the stimulus, the left hemisphere is able to use phonology which benefits word recognition to a larger extent than orthography. The right hemisphere also demonstrates access to both orthography and phonology in the initial moments of word recognition, however, orthographic similarity improves word recognition to a greater extent than phonological similarity.  相似文献   

4.
Evidence from priming and lexical decision tasks suggests that nonwords created by transposing adjacent letter pairs (TL nonwords) are very effective in activating lexical representations of their base words, because the process of orthographic matching tolerates minor changes in letter position. However, this account disregards the possible role of sublexical processing in reading. TL nonwords are perceptually ambiguous, with lexical and sublexical processing giving rise to conflicting interpretations. The consequences of this ambiguity were investigated in a lexical decision experiment with primes that were either high or low bigram frequency TL versions of target words. Priming effects were much larger for low BF primes (e.g., pucnh–PUNCH) than for high BF primes (e.g., panitPAINT). This finding is interpreted as evidence that lexical activation can be inhibited by competing output resulting from sublexical processing of TL letter string. We conclude that phonological processing is an important determinant of responses to TL stimuli, and we consider how this interpretation might be accommodated within the dual-route cascaded (DRC) model of word recognition.  相似文献   

5.
We investigated how orthographic and phonological information is activated during reading, using a fast priming task, and during single-word recognition, using masked priming. Specifically, different types of overlap between prime and target were contrasted: high orthographic and high phonological overlap (track–crack), high orthographic and low phonological overlap (bear–gear), or low orthographic and high phonological overlap (fruit–chute). In addition, we examined whether (orthographic) beginning overlap (swoop–swoon) yielded the same priming pattern as end (rhyme) overlap (track–crack). Prime durations were 32 and 50?ms in the fast priming version and 50?ms in the masked priming version, and mode of presentation (prime and target in lower case) was identical. The fast priming experiment showed facilitatory priming effects when both orthography and phonology overlapped, with no apparent differences between beginning and end overlap pairs. Facilitation was also found when prime and target only overlapped orthographically. In contrast, the masked priming experiment showed inhibition for both types of end overlap pairs (with and without phonological overlap) and no difference for begin overlap items. When prime and target only shared principally phonological information, facilitation was only found with a long prime duration in the fast priming experiment, while no differences were found in the masked priming version. These contrasting results suggest that fast priming and masked priming do not necessarily tap into the same type of processing.  相似文献   

6.
Evidence from priming and lexical decision tasks suggests that nonwords created by transposing adjacent letter pairs (TL nonwords) are very effective in activating lexical representations of their base words, because the process of orthographic matching tolerates minor changes in letter position. However, this account disregards the possible role of sublexical processing in reading. TL nonwords are perceptually ambiguous, with lexical and sublexical processing giving rise to conflicting interpretations. The consequences of this ambiguity were investigated in a lexical decision experiment with primes that were either high or low bigram frequency TL versions of target words. Priming effects were much larger for low BF primes (e.g., pucnh-PUNCH) than for high BF primes (e.g., panit-PAINT). This finding is interpreted as evidence that lexical activation can be inhibited by competing output resulting from sublexical processing of TL letter string. We conclude that phonological processing is an important determinant of responses to TL stimuli, and we consider how this interpretation might be accommodated within the dual-route cascaded (DRC) model of word recognition.  相似文献   

7.
Goldrick M  Rapp B 《Cognition》2007,102(2):219-260
Theories of spoken word production generally assume a distinction between at least two types of phonological processes and representations: lexical phonological processes that recover relatively arbitrary aspects of word forms from long-term memory and post-lexical phonological processes that specify the predictable aspects of phonological representations. In this work we examine the spoken production of two brain-damaged individuals. We use their differential patterns of accuracy across the tasks of spoken naming and repetition to establish that they suffer from distinct deficits originating fairly selectively within lexical or post-lexical processes. Independent and detailed analyses of their spoken productions reveal contrasting patterns that provide clear support for a distinction between two types of phonological representations: those that lack syllabic and featural information and are sensitive to lexical factors such as lexical frequency and neighborhood density, and those that include syllabic and featural information and are sensitive to detailed properties of phonological structure such as phoneme frequency and syllabic constituency.  相似文献   

8.
Two experiments assessed masked priming for words presented to the left and right visual fields in a lexical decision task. In both Experiments, the same magnitude and pattern of priming was obtained for visually similar (kiss-KISS) and dissimilar (read-READ) prime-target pairs. These findings provide no support for the hypothesis that word identification is mediated by separate and lateralized abstract and specific visual form systems. Strikingly, equivalent priming was observed when primes and targets were presented to the same or opposite visual fields, suggesting that priming occurs after visual information from the two hemispheres is integrated.  相似文献   

9.
Difference between the brain's hemispheres in efficiency of intentional search of the mental lexicon with phonological, orthographic, and semantic strategies was investigated. Letter strings for lexical decision were presented at fixation, with a lateralized distractor to the LVF or RVF. Word results revealed that both hemispheres were capable of using each of the three strategies, but the right hemisphere had better baseline processing of orthography and was better at processing semantics. Pseudoword results supported the right hemisphere advantage for orthography and showed a left hemisphere advantage for phonology and assessment of possible semantic relationships. Taken together, the data support the idea that the right hemisphere uses orthography to make efficient decisions about novelty of an item, while the left engages in grapheme-to-phoneme conversion to test hypotheses about unfamiliar items. The convergence of data with previous research reveals that the procedure, as well as analyses of pseudowords, inform laterality research.  相似文献   

10.
Voyer D 《Brain and language》2003,87(3):421-431
Three experiments investigated the role of the right cerebral hemisphere in the word frequency effect observed in visual word recognition. The experiments examined lexical decisions to low and high frequency words as well as non-words in a divided visual field paradigm. Experiment 1 showed a significant word frequency effect only for left visual field presentation. Experiment 2 provided a partial replication of the results of Experiment 1 with a different set of words. In Experiment 3, case alternation was implemented to investigate a possible explanation of the findings. Results of the first experiment were replicated in the condition without case alternation. In the case-alternated condition, the word frequency effect was significant only for right visual field presentations. The present findings emphasize the need to consider that information processing strategies relevant to hemispheric asymmetries might account in part for the word frequency effect.  相似文献   

11.
Participants read aloud nonword letter strings, one at a time, which varied in the number of letters. The standard result is observed in two experiments; the time to begin reading aloud increases as letter length increases. This result is standardly understood as reflecting the operation of a serial, left-to-right translation of graphemes into phonemes. The novel result is that the effect of letter length is statistically eliminated by a small number of repetitions. This elimination suggests that these nonwords are no longer always being read aloud via a serial left-to-right sublexical process. Instead, the data are taken as evidence that new orthographic and phonological lexical entries have been created for these nonwords and are now read at least sometimes by recourse to the lexical route. Experiment 2 replicates the interaction between nonword letter length and repetition observed in Experiment 1 and also demonstrates that this interaction is not seen when participants merely classify the string as appearing in upper or lower case. Implications for existing dual-route models of reading aloud and Share's self-teaching hypothesis are discussed.  相似文献   

12.
Perea M  Acha J  Fraga I 《Brain and language》2008,105(3):199-210
Two divided visual field lexical decision experiments were conducted to examine the role of the cerebral hemispheres in orthographic neighborhood effects. In Experiment 1, we employed two types of words: words with many substitution neighbors (high-N) and words with few substitution neighbors (low-N). Results showed a facilitative effect of N in the left visual field (i.e., right hemisphere) and an inhibitory effect of N in the right visual field (left hemisphere). In Experiment 2, we examined whether the inhibitory effect of the higher frequency neighbors increases in the left hemisphere as compared to the right hemisphere. To go beyond the usual N-metrics, we selected words with (or without) higher frequency neighbors (addition, deletion, or transposition neighbors). Results showed that the inhibitory effect of neighborhood frequency is enhanced in the right visual field. We examine the implications of these findings for the orthographic coding schemes employed by the models of visual word recognition.  相似文献   

13.
A masked priming procedure was used to explore developmental changes in the tuning of lexical word recognition processes. Lexical tuning was assessed by examining the degree of masked form priming and used two different types of prime-target lexical similarity: one letter different (e.g., rlay-->PLAY) and transposed letters (e.g., lpay-->PLAY). The performance of skilled adult readers was compared with that of developing readers in Grade 3. The same children were then tested again two years later, when they were in Grade 5. The skilled adult readers showed no form priming, indicating that their recognition mechanisms for these items had become finely tuned. In contrast, the Grade 3 readers showed substantial form priming effects for both measures of lexical similarity. When retested in Grade 5, the developing readers no longer showed significant one letter different priming, but transposed letter priming remained. In general, these results provide evidence for a transition from more broadly tuned to more finely tuned lexical recognition mechanisms and are interpreted in the context of models of word recognition.  相似文献   

14.
Two experiments explored repetition priming benefits in the left and right cerebral hemispheres. In both experiments, a lateralized lexical decision task was employed using repeated target stimuli. In the first experiment, all targets were repeated in the same visual field, and in the second experiment the visual field of presentation was switched following repetition. Both experiments demonstrated hemispheric specialization for the task (a RVF advantage for word identification) and hemispheric interaction for word processing (lexicality priming from contralateral distracters). In the first experiment, words were identified more quickly and accurately following repetition, with repetition facilitating faster but fewer correct responses for non-words. Complex interactions between visual field of first and second presentation in the second experiment indicate asymmetric interhemispheric repetition priming effects. These results provide a broad picture of hemispheric asymmetries in word processing and of complex interaction between the hemispheres during word recognition.  相似文献   

15.
Both cerebral hemispheres contain phonological, orthographic and semantic representations of words, however there are between-hemisphere differences in the relative engagement and specialization of the different representations. Taking orthographic processing for example, previous studies suggest that orthographic neighbourhood size (N) has facilitatory effects in the right but not the left hemispheres. To pursue the nature of this asymmetric N effect, in particular whether there are individual differences in such specialisation, we examined N in a case of developmental dyslexia, FM. We first describe the nature of his difficulties, which are mainly severe phonological deficits. Employing the divided visual field paradigm with FM revealed a greater sensitivity in the right than in the left hemisphere to orthographic variables, with a significant inhibitory N effect in the left, but not right hemisphere. Such inhibition, to a lesser degree, was found among a group of adults with dyslexia but not among age-matched normal readers. We argue that enhanced sensitivity to orthographic cues is developed in some cases of dyslexia when a normal, phonology-based left hemisphere word recognition processing is not achieved. The interpretation presented here is cast in terms of differences between people with dyslexia and typical readers that originate in the atypical way in which orthographic representations are initially set up.  相似文献   

16.
Previous studies have reported an interaction between visual field (VF) and word length such that word recognition is affected more by length in the left VF (LVF) than in the right VF (RVF). A reanalysis showed that the previously reported effects of length were confounded with orthographic neighborhood size (N). In three experiments we manipulated length and N in lateralized lexical decision tasks. Results showed that length and VF interacted even with N controlled (Experiment 1); that N affected responses to words in the LVF but not the RVF (Experiment 2); and that when length and N were combined, length only affected performance in the LVF for words with few neighbors.  相似文献   

17.
A large orthographic neighborhood (N) facilitates lexical decision for central and left visual field/right hemisphere (LVF/RH) presentation, but not for right visual field/left hemisphere (RVF/LH) presentation. Based on the SERIOL model of letter-position encoding, this asymmetric N effect is explained by differential activation patterns at the orthographic level. This analysis implies that it should be possible to negate the LVF/RH N effect and create an RVF/LH N effect by manipulating contrast levels in specific ways. In Experiment 1, these predictions were confirmed. In Experiment 2, we eliminated the N effect for both LVF/RH and central presentation. These results indicate that the letter level is the primary locus of the N effect under lexical decision, and that the hemispheric specificity of the N effect does not reflect differential processing at the lexical level.  相似文献   

18.
Positron emission tomography was used to investigate two competing hypotheses about the role of the left inferior frontal gyrus (IFG) in word generation. One proposes a domain-specific organization, with neural activation dependent on the type of information being processed, i.e., surface sound structure or semantic. The other proposes a process-specific organization, with activation dependent on processing demands, such as the amount of selection needed to decide between competing lexical alternatives. In a novel word retrieval task, word reconstruction (WR), subjects generated real words from heard non-words by the substitution of either a vowel or consonant. Both types of lexical retrieval, informed by sound structure alone, produced activation within anterior and posterior left IFG regions. Within these regions there was greater activity for consonant WR, which is more difficult and imposes greater processing demands. These results support a process-specific organization of the anterior left IFG.  相似文献   

19.
Recent research indicates that awareness of the rhythmic patterns present in spoken language (i.e., prosody) may be an important and relatively overlooked predictor of reading ability. Two studies investigated the prosodic processing abilities of skilled adult readers and adults with developmental dyslexia. Participants with dyslexia showed reduced awareness of lexical and metrical stress and these skills were found to be significantly associated with, and predictive of, phonological decoding ability. In contrast, the same individuals showed normal patterns of stress based priming at magnitudes similar to controls. These results—suggesting reduced phonological awareness in the context of intact phonological representations—are consistent with recent findings reported in the domain of phonemic processing. Implications for the phonological deficit theory of dyslexia are discussed.  相似文献   

20.
The failure of inhibition hypothesis posits a theoretical distinction between implicit and explicit access in deep dyslexia. Specifically, the effects of failure of inhibition are assumed only in conditions that have an explicit selection requirement in the context of production (i.e., aloud reading). In contrast, the failure of inhibition hypothesis proposes that implicit processing and explicit access to semantic information without production demands are intact in deep dyslexia. Evidence for intact implicit and explicit access requires that performance in deep dyslexia parallels that observed in neurologically intact participants on tasks based on implicit and explicit processes. In other words, deep dyslexics should produce normal effects in conditions with implicit task demands (i.e., lexical decision) and on tasks based on explicit access without production (i.e., forced choice semantic decisions) because failure of inhibition does not impact the availability of lexical information, only explicit retrieval in the context of production. This research examined the distinction between implicit and explicit processes in deep dyslexia using semantic blocking in lexical decision and forced choice semantic decisions as a test for the failure of inhibition hypothesis. The results of the semantic blocking paradigm support the distinction between implicit and explicit processing and provide evidence for failure of inhibition as an explanation for semantic errors in deep dyslexia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号