首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effect of swimming speed on inter-arm coordination and the inter-relationships between swimming speed, inter-arm coordination, and other stroke parameters, in a group of competitive unilateral arm amputee front crawl swimmers. Thirteen highly-trained swimmers were filmed underwater during a series of 25-m front crawl trials of increasing speed. Arm coordination for both arms was quantified using an adapted version of the Index of Coordination. Inter-arm coordination of the amputee swimmers did not change as swimming speed was increased up to maximum. Swimmers showed significantly more catch-up coordination of their affected-arm compared to their unaffected-arm. When sprinting, the fastest swimmers used higher stroke frequencies and less catch-up of their affected-arm than the slower swimmers. Unilateral arm-amputees used an asymmetrical strategy for coordinating their affected-arm relative to their unaffected-arm to maintain the stable repetition of their overall arm stroke cycle. When sprinting, the attainment of a high stroke frequency is influenced mainly by the length of time the affected-arm is held in a stationary position in front of the body before pulling. Reducing this time delay appears to be beneficial for successful swimming performance.  相似文献   

2.
The effect of three months of aerobic training on spatio-temporal and coordination parameters was examined during a swim trial at maximal aerobic speed. Nine male swimmers swam a 400-m front crawl at maximal speed twice: in trial 1, after summer break, and trial 2, after three months of aerobic training. Video analysis determined the stroke (swimming speed, stroke length, and stroke rate) and coordination (Index of Coordination and propulsive phase duration) parameters for every 50-m segment. All swimmers significantly increased their swimming speed after training. For all swimmers except one, stroke length increased and stroke rate remained constant, whereas the Index of Coordination and the propulsive phase duration decreased (p < .05). This study suggests that aerobic training developed a greater force impulse in the swimmers during the propulsive phases, which allowed them to take advantage of longer non-propulsive phases. In this case, catch-up coordination, if associated with greater stroke length, can be an efficient coordination mode that reflects optimal drag/propulsion adaptation. This finding thus provides new insight into swimmers’ adaptations to the middle-distance event.  相似文献   

3.
The purpose of this study was to investigate selected kinematics parameters of the arm stroke in crawl swimmers with disabilities and to examine the potential use of an index of arm coordination (IdC) to evaluate the stroking technique of swimmers with diverse functional abilities. The degree of overlap in the propulsive phases (superposition model) and lag time between the propulsive phases (catch-up model) was examined in 18 well-trained swimmers with loco-motor disabilities, 9 females and 9 males, from functional classes S3-S10 with S10 being most functional. Based on the results, correct coordination appears to be fundamental to swimming crawl stroke in both able-bodied swimmers as well as swimmers with a disability. Some swimmers with disabilities examined here exhibited extreme values at both ends of the index scale. This might be essential to maintaining balance while swimming when not all limb activity contributes to the forward movement.  相似文献   

4.
Swimming constraints and arm coordination   总被引:1,自引:0,他引:1  
Following Newell's concept of constraint (1986), we sought to identify the constraints (organismic, environmental and task) on front crawl performance, focusing on arm coordination adaptations over increasing race paces. Forty-two swimmers (15 elite men, 15 mid-level men and 12 elite women) performed seven self-paced swim trials (race paces: as if competitively swimming 1500m, 800m, 400m, 200m, 100m, 50m, and maximal velocity, respectively) using the front crawl stroke. The paces were race simulations over 25m to avoid fatigue effects. Swim velocity, stroke rate, stroke length, and various arm stroke phases were calculated from video analysis. Arm coordination was quantified in terms of an index of coordination (IdC) based on the lag time between the propulsive phases of each arm. This measure quantified three possible coordination modes in the front crawl: opposition (continuity between the two arm propulsions), catch-up (a time gap between the two arm propulsions) and superposition (an overlap of the two arm propulsions). With increasing race paces, swim velocity, stroke rate, and stroke length, the three groups showed a similar transition in arm coordination mode at the critical 200m pace, which separated the long- and mid-pace pattern from the sprint pace pattern. The 200m pace was also characterized by a stroke rate close to 40strokemin(-1). The finding that all three groups showed a similar adaptation of arm coordination suggested that race paces, swim velocity, stroke rate and stroke length reflect task constraints that can be manipulated as control parameters, with race paces (R(2)=.28) and stroke rate (R(2)=.36) being the best predictors of IdC changes. On the other hand, only the elite men reached a velocity greater than 1.8ms(-1) and a stroke rate of 50strokemin(-1). They did so using superposition of the propulsion phases of the two arms, which occurred because of the great forward resistance created when these swimmers achieved high velocity, i.e., an environmental constraint. Conversely, the elite women and mid-level men had shorter stroke lengths and maintained a time gap between the propulsions of the two arms throughout the increase in paces, with gender and expertise explaining 9% and 8.3% of the IdC changes, respectively. These results indicate that arm coordination cannot be interpreted solely from the IdC value but should be considered from the perspective of task, environmental, and organismic constraints. These constraints can serve as control parameters in experiments aimed at gaining insight into changes in arm coordination during the front crawl. In this context, catch-up coordination, which is often considered as a mistake, was seen to be an adaptation to a relative constraint.  相似文献   

5.
This study analysed the relationships among arm coordination symmetry, motor laterality and breathing laterality during a 100-m front crawl, as a function of expertise. Ten elite swimmers (G1), 10 mid-level swimmers (G2), and 8 non-expert swimmers (G3) composed three skill groups, which were distinguished by velocity, stroke rate, stroke length, breathing frequency (BF) and the mean number of strokes between two breaths - the stroke breath (SB) - over a 100-m front crawl. Four stroke phases were identified by video analysis (catch, pull, push and recovery) and the index of coordination (IdC) measured the lag time between the propulsive phases of the two arms. The three modes of coordination are catch-up (IdC<0%), opposition (IdC=0%) and superposition (IdC>0%). The IdC was established as the mean of IdC1 and IdC2, which measured the lag time between the propulsive phases of the left and right arms, respectively. The coordination symmetry was analysed by comparing IdC1 and IdC2, and the breathing effect was studied by distinguishing IdC1 (and IdC2) with and without breathing. Motor laterality was determined by an adaptation of the Edinburgh Handedness Inventory. Breathing laterality was determined by a questionnaire and observation during the 100-m trial. Most of the front crawl swimmers showed asymmetric arm coordination, with propulsive discontinuity on one side and propulsive superposition on the other. This asymmetry was most often related to breathing laterality (a preferential breathing side for a unilateral breathing pattern) and motor laterality (arm dominance), with different profiles noted. More than the breathing laterality itself, the breathing actions of the non-expert swimmers amplified their asymmetric coordination on the breathing side. Conversely, the elite swimmers, who had higher and more stable spatial-temporal parameters (velocity and stroke lengths), a high coordination value (IdC) and lower breathing frequency (BF), managed their race better than the less proficient swimmers and their asymmetric arm coordination was not disturbed by breathing actions. By determining the dominant arm and the preferential breathing side, the coach can obtain a swimmer profile that allows both coach and swimmer to better understand and respond to excessive coordination asymmetry.  相似文献   

6.
This study assessed perception–action coupling in expert swimmers by focusing on their upper limb inter-segmental coordination in front crawl. To characterize this coupling, we manipulated the fluid flow and compared trials performed in a swimming pool and a swimming flume, both at a speed of 1.35 m s−1. The temporal structure of the stroke cycle and the spatial coordination and its variability for both hand/lower arm and lower arm/upper arm couplings of the right body side were analyzed as a function of fluid flow using inertial sensors positioned on the corresponding segments. Swimmers’ perceptions in both environments were assessed using the Borg rating of perceived exertion scale. Results showed that manipulating the swimming environment impacts low-order (e.g., temporal, position, velocity or acceleration parameters) and high-order (i.e., spatial-temporal coordination) variables. The average stroke cycle duration and the relative duration of the catch and glide phases were reduced in the flume trial, which was perceived as very intense, whereas the pull and push phases were longer. Of the four coordination patterns (in-phase, anti-phase, proximal and distal: when the appropriate segment is leading the coordination of the other), flume swimming demonstrated more in-phase coordination for the catch and glide (between hand and lower arm) and recovery (hand/lower arm and lower arm/upper arm couplings). Conversely, the variability of the spatial coordination was not significantly different between the two environments, implying that expert swimmers maintain consistent and stable coordination despite constraints and whatever the swimming resistances. Investigations over a wider range of velocities are needed to better understand coordination dynamics when the aquatic environment is modified by a swimming flume. Since the design of flumes impacts significantly the hydrodynamics and turbulences of the fluid flow, previous results are mainly related to the characteristics of the flume used in the present study (or a similar one), and generalization is subject to additional investigations.  相似文献   

7.
The aim was to examine behavioural variability within and between individuals, especially in a swimming task, to explore how swimmers with various specialty (competitive short distance swimming vs. triathlon) adapt to repetitive events of sub-maximal intensity, controlled in speed but of various distances. Five swimmers and five triathletes randomly performed three variants (with steps of 200, 300 and 400 m distances) of a front crawl incremental step test until exhaustion. Multi-camera system was used to collect and analyse eight kinematical and swimming efficiency parameters. Analysis of variance showed significant differences between swimmers and triathletes, with significant individual effect. Cluster analysis put these parameters together to investigate whether each individual used the same pattern(s) and one or several patterns to achieve the task goal. Results exhibited ten patterns for the whole population, with only two behavioural patterns shared between swimmers and triathletes. Swimmers tended to use higher hand velocity and index of coordination than triathletes. Mono-stability occurred in swimmers whatever the task constraint showing high stability, while triathletes revealed bi-stability because they switched to another pattern at mid-distance of the task. Finally, our analysis helped to explain and understand effect of specialty and more broadly individual adaptation to task constraint.  相似文献   

8.
Spatial-temporal parameters (velocity, stroke rate, stroke length) and arm-leg coordination in the butterfly stroke were studied as a function of race pace, skill (due to technical level, age, and experience) and gender. Forty swimmers (ten elite men, ten elite women, ten less-skilled men, and ten less-skilled women) performed the butterfly stroke at four velocities corresponding to the appropriate paces for the 400-m, 200-m, 100-m, and 50-m, respectively. Arm and leg stroke phases were identified by video analysis and used to calculate four time gaps (T1: the time difference between the start of the arms' catch phase and the start of the legs' downward phase of the first leg kick; T2: the time difference between the start of the arms' pull phase and the start of the legs' upward phase of the first leg kick; T3: the time difference between the start of the arms' push phase and the start of the legs' downward phase of the second leg kick; and T4: the time difference between the start of the arms' recovery and the start of the legs' upward phase of the second leg kick) and the total time gap (TTG), i.e., the sum of the four discrete time gaps. These values described the changing coupling of arm to leg actions over an entire stroke cycle. A significant race pace effect indicated that the synchronization between the key motor points of the arms and legs, which determine the starts and ends of the arm and leg stroke phases, increased with pace for all participants. A significant skill effect indicated that the elite swimmers had greater velocity, stroke length, and stroke rate and stronger synchronization of the arm and leg stroke phases than the less-skilled swimmers, due to smaller T2 and T3 and greater T1. A significant gender effect revealed greater velocity and stroke length for the men, and smaller T1 for the less-skilled women. These time gap differences between skill levels were related to the capacity of elite swimmers to assume a more streamlined position of trunk, head and upper limbs during leg actions, adopt a shorter glide and higher stroke rate to overcome great forward resistance, and generate higher forces and use better technique during the arm pull. Thus, coaches are advised to begin monitoring arm-leg coordination earlier in swimmers' careers to ensure that they attain their highest possible skill levels.  相似文献   

9.
This study examined the effects of an analogy in learning breaststroke swimming. Two groups of participants had 20 lessons on how to increase their stroke length. The participants in the experimental condition received an analogy with an internal focus of attention. Inter-limb coordination showed qualitative changes in this group: a greater increase in swimming efficiency (i.e., a coordination closer to anti-phase [?50° before learning and ?125° after] and a 10% decrease in the time spent in-phase). The findings showed that an internal focus of attention induced by analogy could be beneficial in improving the quality of inter-limb swimming coordination.  相似文献   

10.
The relationship of anthropometric and training characteristics with race time were investigated in 39 male and 24 female open-water ultra-endurance swimmers in a 26.4 km open-water ultra-swim, using bi- and multivariate analyses. For the men, body height, Body Mass Index, length of arm, and swimming speed during training were related to race time in the bivariate analysis. For the women, swimming speed during training was associated with performance in the bivariate analysis. In the multivariate analysis for the men, Body Mass Index and swimming speed during training were related to race time.  相似文献   

11.
A comparison of the kinematics of the dolphin kick in humans and cetaceans   总被引:2,自引:0,他引:2  
Prerecorded video footage of 9 female and 13 male Olympic level athletes swimming underwater by using the dolphin kick was analyzed and comparisons of the stroke kinematics were made with a previous analysis of cetacean swimming conducted by Rohr and Fish (Rohr, J. J., & Fish, F. E. (2004). Strouhal numbers and optimization of swimming by odontocete cetaceans. The Journal of Experimental Biology, 207, 1633-1642). The velocities of the swimmers ranged from 1.12 m/s to 1.85 m/s which corresponded to a range of effort levels. While some swimmers performed the dolphin kick on their backs (dorsal), others employed the prone (ventral) or the side (lateral) position and no distinctions were made between these positions when considering the results. The raw quantities measured were body length L (from the fingertips of the outstretched arms to the tips of the toes), time T(L) taken by the swimmer to traverse a body length, kick amplitude A at the toes, and the number of video frames per kick. These allowed us to determine the average velocity U of the swimmer, the kick frequency f, the reduced or length-specific velocity U/L (body lengths traversed per second), and the non-dimensional quantities kick amplitude A/L, the Strouhal number fA/U (ratio of tip or toe speed to forward speed) and the quantity fL/U (kicks per body length traversed). Trends of these dimensional and non-dimensional quantities were examined for the swimmers and compared to the cetaceans. Results showed that humans and cetaceans have comparable non-dimensional kick amplitudes, but kick frequency in humans was greater than for cetaceans swimming at equivalent speeds. Human swimmers required up to five kicks per body length traveled, while cetaceans require only 1.3. Length-specific velocities reached a maximum of 0.81 for humans and this was about half that of cetaceans. Human swimmers had a mean Strouhal number of 0.80, which was above the range considered optimal for underwater undulatory propulsion.  相似文献   

12.
The aim of this study was to observe the relationship between time limit at the minimum velocity that elicits maximal oxygen consumption (TLim-v VO2 max) and stroke rate, stroke length, and stroke index. 13 men and 10 women, highly trained swimmers, performed an intermittent incremental test for v VO2 max assessment and an all-out swim to estimate TLim-v VO2 max. The mean +/- SD TLim-v VO2 max, v VO2 max, stroke rate, stroke length, and stroke index values were 233.36 +/- 53.92 sec., 1.40 +/- .06 meter/sec., 35.58 +/- 2.89 cycles/min., 2.39 +/- .22 meter/cycle, and 3.36 +/- .41 meter2/(cycle x sec.), respectively. The correlation between TLim-v VO2 max and stroke rate was -.51 (p < .01), and values for TLim-v VO2 max with stroke length (r = .52, p < .01) and stroke index (r = .45, p < .05). These results seem to suggest that technical skill is a key factor in typical efforts requiring prolonged aerobic power.  相似文献   

13.
A coaching strategy to decrease errors in swimming strokes with swimmers who had not improved under "standard" coaching procedures was investigated using a multiple baseline design across subjects and swimming strokes. The procedure resulted in a large decrease in errors on swimming strokes during sessions in a training pool. Stimulus generalization of improved performance to normal practice conditions in the regular pool was observed with all but one swimmer. This improvement was maintained during two maintenance phases lasting approximately 2 weeks, as well as under standard coaching conditions during at least a 2-week follow-up. For two swimmers, error rates on one of the strokes showed a gradual increase between the third and fifth week of follow-up, but brief remedial prompting sessions immediately corrected their performance. Some beneficial response generalization to other components of the stroke being trained was observed, but no improvements were found on untrained strokes. The error correction package did not disrupt practice, require excessive amounts of the coach's time, or necessitate the use of cumbersome apparatus. In addition, the coach and the swimmers considered the procedures to be effective, and expressed their willingness to participate in them again in the future.  相似文献   

14.
“Efficiency,” or economy of movement with respect to energy expended in achieving the goal of the task, is implicit in many definitions of skilled performance. This study examined changes in mechanical efficiency and transport efficiency on a novel gross motor skill. The subjects were 5 physically fit adult males who were asked to perform 20 3-min trials walking on hands and feet (crawling) on a motor-driven treadmill at constant speed (0.76 mis). Transport efficiency, the metabolic cost of transporting the body mass a given distance at constant speed, improved significantly over practice trials. Mechanical efficiency, derived from the mechanical power output of individual body segments, showed an overall improvement of 13.7% by the last day of practice. Even though this improvement was not statistically significant it appears to be greater than that expected due to physiological training effects. The efficiency measures correlated significantly with changes in limb kinematics. It was concluded that with practice subjects tailored their movement pattern to produce energy efficient adaptations to task constraints. These findings provide empirical support for theoretical perspectives that have emphasized biological principles in the organization of motor coordination and control.  相似文献   

15.
"Efficiency, " or economy of movement with respect to energy expended in achieving the goal of the task, is implicit in many definitions of skilled performance. This study examined changes in mechanical efficiency and transport efficiency on a novel gross motor skill. The subjects were 5 physically fit adult males who were asked to perform 20 3-min trials walking on hands and feet (crawling) on a motor-driven treadmill at constant speed (0.76 m/s). Transport efficiency, the metabolic cost of transporting the body mass a given distance at constant speed, improved significantly over practice trials. Mechanical efficiency, derived from the mechanical power output of individual body segments, showed an overall improvement of 13.7% by the last day of practice. Even though this improvement was not statistically significant it appears to be greater than that expected due to physiological training effects. The efficiency measures correlated significantly with changes in limb kinematics. It was concluded that with practice subjects tailored their movement pattern to produce energy efficient adaptations to task constraints. These findings provide empirical support for theoretical perspectives that have emphasized biological principles in the organization of motor coordination and control.  相似文献   

16.
Vortex re-capturing and kinematics in human underwater undulatory swimming   总被引:3,自引:0,他引:3  
To maximize swimming speed athletes copy fish undulatory swimming during the underwater period after start and turn. The anatomical limitations may lead to deviations and may enforce compensating strategies. This has been investigated by analyzing the kinematics of two national female swimmers while swimming in a still water pool. Additionally, the flow around and behind the swimmers was measured with the aid of time-resolved particle image velocimetry (TR-2D-PIV). As compared to fish, the swimmers used undulatory waves characterized by much higher Strouhal numbers but very similar amplitude distributions along the body and Froude efficiencies. Vortices generated in the region of strongly flexing joints are suitable to be used pedally to enhance propulsion (vortex re-capturing). Complementing studies using numerical and technical modeling will help us to probe the efficiency of observed mechanisms and further improvements of the human strategy.  相似文献   

17.
Given the flexible organization of locomotion evidenced in the many ways the limbs can be coordinated, the authors explored the potentially correspondingly flexible organization of nonvisual (kinesthetic) distance perception. As kinesthetic distance perception is known to be affected by how the limbs are coordinated, the authors probed the potential perceptual contribution of the arms during locomotion by manipulating arm–leg coordination patterns in blind-walked distance-matching tasks. Whereas manipulation of arm–leg coordination for walking with free-swinging arms had no observable perceptual consequences, comparable manipulation for walking with hiking poles did affect distance matching. These results suggest that under conditions in which the arms act to propel the body (e.g., crawling or stair-climbing) a person's nonvisual sense of movement is conveyed in the coordinated actions of all four limbs.  相似文献   

18.
The aim of the present study was to examine inter-individual variability in upper-lower limb breaststroke coordination. First, inter-individual variability was compared between recreational and comparative swimmers. Second, as recreational swimmers revealed more variable inter-limb coordination than competitive swimmers, inter-individual variability was assessed among recreational swimmers to identify coordination profiles. The elbow-knee continuous relative phase (CRP) was used to analyze upper-lower limbs coupling during a breaststroke cycle. Twenty-four recreational and twenty-four competitive swimmers swam 25 m at 80% of their maximal speed. Underwater and aerial side views were mixed and genlocked. Angular position, velocity and CRP were calculated for the knee and elbow joints by digitizing body markers from the side view. The kinematics of three cycles were filtered, averaged and normalized in terms of percentage of total cycle duration. The topography of the mean CRP curve of the recreational swimmers resembled a ‘W-shape’, whereas an ‘inverse U-shape’ was seen in the competitive swimmers. However, higher inter-individual variability was observed among the recreational swimmers than among the competitive swimmers (38.1° vs. 19.4°; p < .05), suggesting that several profiles of inter-limb coordination may exist in recreational swimmers. Coordination profiling showed that three clusters could classify the recreational swimmers.  相似文献   

19.
This study aimed at quantifying upper limb kinetic asymmetries in maximal front crawl swimming and to examine if these asymmetries would affect the contribution of force exertion to swimming performance. Eighteen high level male swimmers with unilateral breathing patterns and sprint or middle distance specialists, volunteered as participants. A load-cell was used to quantify the forces exerted in water by completing a 30 s maximal front crawl tethered swimming test and a maximal 50 m free swimming was considered as a performance criterion. Individual force–time curves were obtained to calculate the mean and maximum forces per cycle, for each upper limb. Following, symmetry index was estimated and breathing laterality identified by questionnaire. Lastly, the pattern of asymmetries along the test was estimated for each upper limb using linear regression of peak forces per cycle. Asymmetrical force exertion was observed in the majority of the swimmers (66.7%), with a total correspondence of breathing laterality opposite to the side of the force asymmetry. Forces exerted by the dominant upper limb presented a higher decrease than from the non-dominant. Very strong associations were found between exerted forces and swimming performance, when controlling the isolated effect of symmetry index. Results point that force asymmetries occur in the majority of the swimmers, and that these asymmetries are most evident in the first cycles of a maximum bout. Symmetry index stood up as an influencing factor on the contribution of tethered forces over swimming performance. Thus, to some extent, a certain degree of asymmetry is not critical for short swimming performance.  相似文献   

20.
Coordination of limb segments in graphic motor behavior has been studied primarily in cyclic tasks. In the present study, limb segment recruitment patterns were investigated in a discrete line-drawing task. Subjects (N = 11) performed pointing movements varying in direction, amplitude, and speed. The contributions of index finger, hand, and arm to the movement were analyzed by evaluating the angular displacements in 7 joint dimensions. The results showed that amplitude and direction affected limb segment involvement in the same way they have been reported to affect it in cyclic movements. Upward left- (up-left) directed movements were primarily achieved by fingers and arm, whereas upward right- (up-right) directed movements were accomplished with the hand and the arm. Large amplitudes elicited not only an increase of proximal but also a decrease of distal limb segment involvement, especially in the up-left direction. In the present discrete pointing task, effects of speed on limb segment involvement were different from speed effects that were observed earlier in cyclic tasks: Larger limb segments became more involved in fast than in slow discrete movements. With respect to the timing of limb segment recruitment, all joints tended to move simultaneously, but small deviations from synchronous joint movement onset and offset were present. The results are discussed in the context of recent theories of limb segment coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号