首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大脑两半球与整体和局部性质的选择性加工   总被引:2,自引:0,他引:2  
张昕  韩世辉 《心理学报》2004,36(5):507-514
研究大脑两半球在加工整体和局部性质中的优势以及两半球能否同时分别选择两个复合刺激的整体和局部性质。实验中把一个复合字母随机呈现在左视野或右视野,或者把两个复合字母同时分别呈现在左视野和右视野。实验一发现,在单侧呈现条件下,被试检测左右视野的整体或局部靶目标的反应时没有显著差别,但在双侧同时呈现条件下,检测右视野局部靶目标比检测左视野局部靶目标时的反应时短。实验二要求被试检测同时呈现在左右视野的整体或局部靶目标,发现当两个视野的靶目标处于同一水平时(整体或局部)反应时较短,两个视野的靶目标处于不同水平时(一侧处于整体水平而另一侧处于局部水平)反应时较长。这些结果提示,当两个复合刺激同时呈现在左右视野时,大脑左半球在选择性加工局部性质时具有优势;左右两半球更容易选择两个复合刺激同一个水平的性质,分别选择两个复合刺激不同水平的性质比较困难。  相似文献   

2.
蔡厚德 《心理学报》2005,37(1):14-18
采用半视野速示术将标准刺激在中间视野呈现,比较刺激以不同偏心视角(3.5°,5°和6.5°)在左或右视野同时呈现,以检查不同偏心视角引起比较刺激知觉辨认难度的改变对汉字大写数字奇-偶概念同/异判断任务在大脑两半球间分布式加工的影响。结果显示:随偏心视角的增大正确反应时和错误百分数均显著提高;三种视角条件下左右手的正确反应时均有明显的右视野(左半球)优势;3.5°视角右视野(左半球)呈现时右手反应明显快于左手,5°视角右视野(左半球)与左视野(右半球)呈现时均为右手反应明显快于左手,6.5°视角右视野(左半球)与左视野(右半球)呈现时均为左手反应明显快于右手。这些结果提示:本研究条件下只有比较刺激在6.5°偏心视角呈现时刺激和反应可能出现大脑两半球间分布式加工,3.5°和5°视角呈现时可能为左半球单独加工。6.5°视角刺激呈现的分布加工明显由于大视角呈现时比较刺激辨认难度与注意要求的提高所致。  相似文献   

3.
In a visual simple reaction time paradigm with attention divided between the left and right visual fields, redundancy gain refers to the finding of faster responses to stimuli presented in both fields than to single stimuli. The present study investigated whether the effects of low-level perceptual processing affect the redundancy gain by comparing the detection of onsets versus offsets. In different blocks, participants responded to left and right visual field stimuli that either appeared (onset) or disappeared (offset), with a single stimulus change in some trials and two redundant stimulus changes in others. With onset stimuli, the results replicated previous redundancy gain effects. In contrast, there was much less redundancy gain when participants responded to stimulus offsets. This finding suggests that redundancy gain is sensitive to low-level perceptual characteristics, such as onset versus offset presentation of stimuli.  相似文献   

4.
Hemispheric processing, expressed as mean reaction time to various visual stimuli presented to the left and right visual fields, was investigated in eighteen stuttering and nonstuttering children. Tachistoscopic procedures were used to present linguistic stimuli (words and nonwords) as well as nonlinguistic stimuli (familiar and unfamiliar geometric figures) to the visual fields. Subjects responded by pressing a telegraph key when they perceived a real word or a familiar geometric figure. They were to make no response when they perceived nonwords or unfamiliar geometric figures. Faster reaction times were taken as an index of the most efficient or dominant hemisphere for a given task. No significant differences were found in mean reaction times for groups, visual fields, type of task, nor any of their interactions. Likewise, the data on accuracy also did not suggest that a larger proportion of stutters responded more accurately when linguistic stimuli were presented to the right hemisphere. Based on mean reaction times and on accuracy data, the stuttering and nonstuttering children performed with similar efficiencies and processing patterns.  相似文献   

5.
There is evidence that automatic visual attention favors the right side. This study investigated whether this lateral asymmetry interacts with the right hemisphere dominance for visual location processing and left hemisphere dominance for visual shape processing. Volunteers were tested in a location discrimination task and a shape discrimination task. The target stimuli (S2) could occur in the left or right hemifield. They were preceded by an ipsilateral, contralateral or bilateral prime stimulus (S1). The attentional effect produced by the right S1 was larger than that produced by the left S1. This lateral asymmetry was similar between the two tasks suggesting that the hemispheric asymmetries of visual mechanisms do not contribute to it. The finding that it was basically due to a longer reaction time to the left S2 than to the right S2 for the contralateral S1 condition suggests that the inhibitory component of attention is laterally asymmetric.  相似文献   

6.
Reaction times of nine subjects with severe Broca's aphasia were measured to verbal stimuli presented monaurally to their left or right ears. The aphasic subjects showed left-ear advantages in reaction times to verbal stimuli, paralleling dichotic findings among aphasic patients. The results are interpreted as consistent with right-hemisphere language processing.  相似文献   

7.
Research on the lateralisation of brain functions for emotion has yielded different results as a function of whether it is the experience, expression, or perceptual processing of emotion that is examined. Further, for the perception of emotion there appear to be differences between the processing of verbal and nonverbal stimuli. The present research examined the hemispheric asymmetry in the processing of verbal stimuli varying in emotional valence. Participants performed a lexical decision task for words varying in affective valence (but equated in terms of arousal) that were presented briefly to the right or left visual field. Participants were significantly faster at recognising positive words presented to the right visual field/left hemisphere. This pattern did not occur for negative words (and was reversed for high arousal negative words). These results suggest that the processing of verbal stimuli varying in emotional valence tends to parallel hemispheric asymmetry in the experience of emotion.  相似文献   

8.
Research on the lateralisation of brain functions for emotion has yielded different results as a function of whether it is the experience, expression, or perceptual processing of emotion that is examined. Further, for the perception of emotion there appear to be differences between the processing of verbal and nonverbal stimuli. The present research examined the hemispheric asymmetry in the processing of verbal stimuli varying in emotional valence. Participants performed a lexical decision task for words varying in affective valence (but equated in terms of arousal) that were presented briefly to the right or left visual field. Participants were significantly faster at recognising positive words presented to the right visual field/left hemisphere. This pattern did not occur for negative words (and was reversed for high arousal negative words). These results suggest that the processing of verbal stimuli varying in emotional valence tends to parallel hemispheric asymmetry in the experience of emotion.  相似文献   

9.
以往关于汉字字词识别脑功能偏侧化的研究发现了左半球优势、右半球优势或者大脑两半球均势三种不同的结果。该研究采用一侧化Stroop范式(刺激分别只呈现于左视野、中央视野或右视野中),通过系统地改变刺激呈现时间以期探讨刺激呈现时间是可以解释这些不一致结果的可能因素之一。结果显示:对于右利手被试,在刺激呈现时间为60 ms时右半球出现了较强的Stroop效应,在刺激呈现200 ms时左右半球的Stroop效应没有表现出差异,在刺激呈现时间较长时左半球表现出较强的Stroop效应。该结果提示,随着刺激呈现时间的延长,语义优势发生了从右半球到左半球的转换。  相似文献   

10.
The aim of the present study was to analyze if the left hemisphere preferentially controls flexion responses toward positive stimuli, while the right hemisphere is specialized toward extensor responses to negative pictures. To this end, right-handed subjects had to pull or push a joystick subsequent to seeing a positive or a negative stimulus in their left or right hemifield. Flexion responses were faster for positive stimuli, while negative stimuli were associated with faster extensions responses. Overall, performance was fastest when emotional stimuli were presented to the left visual hemifield. This right hemisphere superiority was especially clear for negative stimuli, while reaction times toward positive pictures showed no hemispheric difference. We did not find any interaction between hemifield and response type. Neither was there a triple interaction between valence, hemifield and response type. We suppose that response dichotomies in humans are not as tightly linked to a hemisphere- and valence-bound reaction type as previously assumed.  相似文献   

11.
We examined whether the processing of discontinuities involved in figure-ground segmentation, like line ends, can be modulated under selective attention conditions. Subjects decided whether a gap in collinear or parallel lines was located to the right or left. Two stimuli were displayed in immediate succession. When the gaps were on the same side, reaction times (RTs) for the second stimulus increased when collinear lines followed parallel lines, or the reverse, but only when the two stimuli shared the same orientation and location. The effect did not depend on the global form of the stimuli or on the relative orientation of the gaps. A frame drawn around collinear elements affected the results, suggesting a crucial role of the "amodal" orthogonal lines produced when line ends are aligned. Including several gaps in the first stimulus also eliminated RT variations. By contrast, RT variations remained stable across several experimental blocks and were significant for interstimulus intervals from 50 to 600 msec between the two stimuli. These results are interpreted in terms of a modulation of the processing of line ends or the production of amodal lines, arising when attention is selectively drawn to a gap.  相似文献   

12.
The purpose of the present study was to address the issue of laterality of familiar face recognition. Seventy-two participants judged familiar faces presented laterally or centrally for their "faceness," familiarity, occupation, and name (which represent four stages of familiar face processing) using one of three response modes-verbal, manual, or combined. The pattern of reaction times (RTs) implied a serial process of familiar face recognition. Centrally presented stimuli were recognized faster than laterally presented stimuli. No RT differences were found between the left and right visual fields (VFs) across all judgments and response modes. The findings were interpreted as supporting the notion that there are no significant hemispheric differences in familiar face recognition.  相似文献   

13.
Two different experimental procedures were used to examine (a) information-processing differences between two groups of subjects (Cs versus Vs) identified by the form of their conditioned eyeblinks; (b) information-processing differences between the right and left cerebral hemispheres; and (c) parallels between hypothesized C-V differences and right-left hemisphere differences. In the first experiment, the evocative command words BLINK and DON'T BLINK served as positive and negative conditioned stimuli. It was found that Vs gave more conditioned eyeblinks than Cs and that differential eyelid conditioning of Vs more than Cs was influenced by the semantic content of the stimuli. More importantly, the conditioning performance of Cs was more influenced by the semantic attributes of the stimuli when they were presented directly to the right visual field (left hemisphere) than when they were presented directly to the left visual field (right hemisphere). In contrast, the conditioning performance of Vs was equally influenced by the semantic attributes regardless of which hemisphere received direct stimulation. A second experiment was designed to determine whether such hemisphere-of-presentation differences for Cs versus Vs could also be obtained in a very different task. Subjects classified as Cs or Vs during a differential eyelid conditioning task then performed two same-different reaction time (RT) tasks that required discrimination of complex polygons in one case and the names of letters in another. On each RT trial both stimuli of a pair appeared briefly either in the center, left, or right visual field. For both Cs and Vs RTs to complex polygon pairs averaged 20 msec faster on left visual field trials than on right visual field trials, consistent with current hypotheses about right-hemisphere specialization for visuospatial processing. In contrast, the results for letter pairs generally confirmed the C-V differences found in Experiment 1. That is, the right visual field (left-hemisphere) advantage for these verbal stimuli was once again larger for Cs than for Vs. The present results suggest that the two groups of subjects (Cs versus Vs) differ qualitatively in the modes of information processing that they typically employ. The results also suggest that these different modes of processing are related to aspects of cerebral hemisphere organization and that even right-handed individuals may differ from each other in the extent to which each cerebral hemisphere is mobilized for a given experimental task. Such individual differences must be incorporated into both models of classical eyelid conditioning and models of cerebral hemisphere specialization.  相似文献   

14.
In the visual modality, short rhythmic stimuli have been proven to be better processed (sequentially) by the left hemisphere, while longer rhythms appear to be better (holistically) processed by the right hemisphere. This study was set up to see if the same holds in the auditory modality. The rhythm task as originally designed by Seashore was computerized and is part of the Fepsy Neuropsychological battery. This task was performed by 85 patients with intractable temporal lobe epilepsy (left TLE = 32; right TLE = 53) enrolled in the Dutch Collaborative Epilepsy Surgery Program. They performed the task before and 6 months after surgery. The task consists of 30 pairs of rhythmic patterns in 3 series of 10 items. The series contains patterns of 5, 6, or 7 notes. The purpose is to indicate whether the two patterns are the same or different. Reaction times are also measured. If the hypothesis is true, the short-item sequence will be better processed by patients with right temporal lobe epilepsy (nonimpaired left temporal lobe), the longer sequence will be better processed by the left temporal epilepsy group (nonimpaired right temporal lobe). No overall laterality effect on rhythm perception could be found and no difference was found between both test moments. IQ did not correlate with rhythm performance. However, there was an interaction effect of laterality and rhythm length on performance and reaction time. This effect can be explained by the increase after the operation of the score of the left focus group and a decrease in the right focus group on the longer rhythms. This effect was somewhat less strong in the reaction times: a clear tendency for faster reaction times after surgery in the left and longer reaction times in the right focus group. The effect could not be explained for by the difference in extent of resection in either temporal lobe. This study showed that memory for and discrimination of auditory rhythm is dependent on which hemisphere is used in processing. The effect could be demonstrated for the right hemisphere, which uses a holistic processing of stimuli, which outperforms the left in rhythms consisting of a long sequence. In left temporal resections an improvement occurs on the longer rhythms and in right temporal resections the performance on the longest rhythms decreases.  相似文献   

15.
The relationship between knowing where a haptic property is located and knowing what it is was investigated using a haptic-search paradigm. Across trials, from one to six stimuli were presented simultaneously to varying combinations of the middle three fingertips of both hands. Participants reported the presence/absence of a target or its location for four perceptual dimensions: rough/smooth, edge/no edge, relative position (right/left), and relative orientation (right/left). Reaction time data were plotted as a function of set size. The slope data indicated no difference in processing load for location as compared to identity processing. However, the intercept data did reveal a cost associated with processing location information. Location information was not obtained for "free" when identity was processed. The data also supported a critical distinction between material and edge dimensions versus geometric dimensions, as the size of the cost associated with processing location was larger for spatial than for intensive stimuli.  相似文献   

16.
Twenty-four right-handed subjects received random presentations of the numbers 1-6 in the form of words, digits, and dot patterns, to the left and right visual fields. Accuracy and reaction time were recorded for an odd-even judgment requiring a manual response. A significant stimulus type of visual field interaction was obtained, with words showing a left-hemisphere advantage and digits and dot patterns showing a right-hemisphere advantage. This pattern supports Coltheart's (1980, Deep dyslexia: A right hemisphere hypothesis, In M. Coltheart, K. Patterson, & J.C. Marshall (Eds.), Deep dyslexia, London: Routledge & Kegan Paul) right hemisphere reading hypothesis, which suggests that the left hemisphere's general advantage in processing linguistic material may be specific to stimuli which involve phonological processing. When phonological processing is not possible (e.g., for arabic digits and other ideographic orthographies), the right hemisphere may have an advantage because of its superior visuospatial processing capabilities.  相似文献   

17.
Three experiments measured order of processing for single faces presented to the left or right visual field (VF) using a same-different matching task. In contrast to earlier studies, the stimuli in the present experiments were carefully matched for overall similarity prior to the actual experiments. Experiments 1 and 2 showed that a significant top-to-bottom order of processing occurred for line drawings of unfamiliar faces but not for line drawings of familiar faces. Experiment 3 found evidence supporting top-to-bottom processing for unfamiliar photographic face stimuli. The photographic stimuli in Experiment 3 were matched more quickly when presented in the left VF (right hemisphere); however, this VF asymmetry was not related to previously reported differences in order of processing. It is suggested that under some conditions faces presented to the right hemisphere may be processed more like familiar faces than faces presented to the left hemisphere; however, this difference is not critical for the left VF (right hemisphere) superiority often found in face recognition tasks.  相似文献   

18.
The present study was designed to trace the normal development of local and global processing of hierarchical visual forms. We presented pairs of hierarchical shapes to children and adults and asked them to indicate whether the two shapes were the same or different at either the global or the local level. In Experiments 1 (6-year-olds, 10-year-olds, adults) and 2 (10-year-olds, 14-year-olds, adults), we presented stimuli centrally. All age groups responded faster on global trials than local trials (global precedence effect), but the bias was stronger in children and diminished to the adult level between 10 and 14 years of age. In Experiment 3 (10-year-olds, 14-year-olds, adults), we presented stimuli in the left or right visual field so that they were transmitted first to the contralateral hemisphere. All age groups responded faster on local trials when stimuli were presented in the right visual field (left hemisphere); reaction times on global trials were independent of visual field. The results of Experiment 3 suggest that by 10 years of age the hemispheres have adult-like specialization for the processing of hierarchical shapes, at least when attention is directed to the global versus local level. Nevertheless, their greater bias in Experiments 1 and 2 suggests that 10-year-olds are less able than adults to modulate attention to the output from local versus global channels-perhaps because they are less able to ignore distractors and perhaps because the cerebral hemispheres are less able to engage in parallel processing.  相似文献   

19.
The way our brain processes emotional stimuli has been studied intensively. One of the main issues still under debate is the laterality of valence processing. Herein, we employed the fact that pupil size increases under conditions of higher mental effort and during emotional processing, in order to contrast three proposed hypotheses in the field. We used different manual response mapping for emotional stimuli: Participants responded with their right hand for positive and with their left hand for negative facial expressions, or vice versa. The hands position was either regular (Experiment 1) or crossed (Experiment 2) in order to rule out a “spatial-valence association” alternate explanation. A third experiment was conducted by employing a passive viewing procedure of peripheral emotional stimuli. In the first two experiments, pupil size was larger when participants responded to positive stimuli with their left hand and to negative with their right hand, compared with the opposite mapping. Results of Experiment 3 strengthen the findings of Experiments 1 and 2. These findings provide significant psychophysiological evidence for the valence hypothesis: Processing positive stimuli involves the left hemisphere, while processing negative stimuli involves the right hemisphere. These results are discussed in relation to contemporary theories of emotion processing.  相似文献   

20.
Abstract— In a pitch discrimination task, subjects were faster and more accurate in judging low-frequency sounds when these stimuli were presented to the left ear, compared with the right ear. In contrast, a right-ear advantage was found with high-frequency sounds. The effect was in terms of relative frequency and not absolute frequency, suggesting that the effect arisen from pastsensory mechanisms. A simitar laterality effect has been reported in visual perception with stimuli varying in spatial frequency. These multimodal laterality effects may reflect a general computational difference between the two cerebral hemispheres, with the left hemisphere biased for processing high-frequency information and the right hemisphere biased for processing low-frequency information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号