首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The spontaneous tendency to join the largest social group was used to investigate quantity discrimination in fish. Fish discriminated between shoals that differed by one element when the paired numbers were 1vs2, 2vs3 and 3vs4, but not when 4vs5 or larger. Using large numerosities (>4), the ability to discriminate between two numbers improved as the numerical distance between them increased and a significant discrimination was found only with ratios of 1:2 or smaller (4vs8, 8vs16 and 4vs10). Experiments to control for non-numerical variables evidenced the role played by the total area of stimuli with both large and small numerosities; the total quantity of movement of the fish within a shoal appeared also important but only when large numerosities were involved. Even though the pattern of discrimination exhibited by female mosquitofish is not fully consistent with any of the existing models of quantity representation, our results seem to suggest two distinct mechanisms in fish, one used to compare small numbers of objects and one used when larger numerosities are involved.  相似文献   

2.
Previous studies have suggested that typically developing 6‐month‐old infants are able to discriminate between small and large numerosities. However, discrimination between small numerosities in young infants is only possible when variables continuous with number (e.g. area or circumference) are confounded. In contrast, large number discrimination is successful even when variables continuous with number are systematically controlled for. These findings suggest the existence of different systems underlying small and large number processing in infancy. How do these develop in atypical syndromes? Williams syndrome (WS) is a rare neurocognitive developmental disorder in which numerical cognition has been found to be impaired in older children and adults. Do impairments of number processing have their origins in infancy? Here this question is investigated by testing the small and large number discrimination abilities of infants and toddlers with WS. While infants with WS were able to discriminate between 2 and 3 elements when total area was confounded with numerosity, the same infants did not discriminate between 8 and 16 elements, when number was not confounded with continuous variables. These findings suggest that a system for tracking the features of small numbers of object (object‐file representation) may be functional in WS, while large number discrimination is impaired from an early age onwards. Finally, we argue that individual differences in large number processing in infancy are more likely than small number processing to be predictive of later development of numerical cognition.  相似文献   

3.
While there is convincing evidence that preverbal human infants and non-human primates can spontaneously represent number, considerable debate surrounds the possibility that such capacity is also present in other animals. Fish show a remarkable ability to discriminate between different numbers of social companions. Previous work has demonstrated that in fish the same set of signature limits that characterize non-verbal numerical systems in primates is present but yet to provide any demonstration that fish can really represent number rather than basing their discrimination on continuous attributes that co-vary with number. In the present work, using the method of ‘item by item’ presentation, we provide the first evidence that fish are capable of selecting the larger group of social companions relying exclusively on numerical information. In our tests subjects could choose between one large and one small group of companions when permitted to see only one fish at a time. Fish were successful when both small (3 vs. 2) and large numbers (8 vs. 4) were involved and their performance was not affected by the density of the fish or by the overall space occupied by the group.  相似文献   

4.
Vigorous debate surrounds the issue of whether infants use different representational mechanisms to discriminate small and large numbers. We report evidence for ratio-dependent performance in infants’ discrimination of small numbers of auditory events, suggesting that infants can use analog magnitudes to represent small values, at least in the auditory domain. Seven-month-old infants in the present study reliably discriminated two from four tones (a 1:2 ratio) in Experiment 1, when melodic and continuous temporal properties of the sequences were controlled, but failed to discriminate two from three tones (a 2:3 ratio) under the same conditions in Experiment 2. A third experiment ruled out the possibility that infants in Experiment 1 were responding to greater melodic variety in the four-tone sequences. The discrimination function obtained here is the same as that found for infants’ discrimination of large numbers of visual and auditory items at a similar age, as well as for that obtained for similar-aged infants’ duration discriminations, and thus adds to a growing body of evidence suggesting that human infants may share with adults and nonhuman animals a mechanism for representing quantities as “noisy” mental magnitudes.  相似文献   

5.
Two experiments investigated developmental changes in large number discrimination with visual‐spatial arrays. Previous studies found that 6‐month‐old infants were able to discriminate arrays that differ by a ratio of 1:2 but not 2:3. We found that by 10 months, infants were able to reliably discriminate 8 from 12 elements (2:3) but not 8 from 10 elements (4:5). Thus, number discrimination improves in precision during the first year, and these findings converge with studies using auditory stimuli.  相似文献   

6.
There is controversy in comparative psychology about whether on the one hand non-symbolic number estimation of small (≤4) and large numbers involves a single mechanism (an approximate number system), or whether on the other hand enumeration of the numbers 1–4 is accomplished by a separate mechanism, an object tracking system. To date, support for the latter hypothesis has come only from the different ratio-dependency of performance seen in the two numerical ranges, a reading that has been criticized on several grounds. In humans, the two-system hypothesis is supported by evidence showing that manipulation of the physical properties of the stimuli (e.g., the motion of the items) has dissimilar effects on small- and large-number discrimination. In this research, we studied this effect on guppies. Initially, fish were trained to simultaneously discriminate two numerical contrasts having the same easy ratio (0.50): one in the small-number (2 vs. 4) range and one in the large-number (6 vs. 12) range. Half of the fish were presented with moving items; the other half were shown the same stimuli without motion. Fish were then subjected to non-reinforced probe trials in the presence of a more difficult ratio (0.75: 3 vs. 4 and 9 vs. 12). Under both static and moving conditions, the fish significantly discriminated 6 versus 12, but not 9 versus 12 items. As regards small numbers, both groups learned to discriminate a 0.50 ratio, but only fish tested with moving stimuli also discriminated 3 and 4 items. This differential effect suggests that fish may possess two separate systems for small- and large-number discrimination.  相似文献   

7.
Quantity discrimination in female mosquitofish   总被引:6,自引:6,他引:0  
The ability in animals to count and represent different numbers of objects has received a great deal of attention in the past few decades. Cumulative evidence from comparative studies on number discriminations report obvious analogies among human babies, non-human primates and birds and are consistent with the hypothesis of two distinct and widespread mechanisms, one for counting small numbers (<4) precisely, and one for quantifying large numbers approximately. We investigated the ability to discriminate among different numerosities, in a distantly related species, the mosquitofish, by using the spontaneous choice of a gravid female to join large groups of females as protection from a sexually harassing male. In one experiment, we found that females were able to discriminate between two shoals with a 1:2 numerosity ratio (2 vs. 4, 4 vs. 8 and 8 vs. 16 fish) but failed to discriminate a 2:3 ratio (8 vs. 12 fish). In the second experiment, we studied the ability to discriminate between shoals that differed by one element; females were able to select the larger shoal when the paired numbers were 2 vs. 3 or 3 vs. 4 but not 4 vs. 5 or 5 vs. 6. Our study indicates that numerical abilities in fish are comparable with those of other non-verbal creatures studied; results are in agreement with the hypothesis of the existence of two distinct systems for quantity discrimination in vertebrates.  相似文献   

8.
Non-verbal numerical behavior in human infants, human adults, and non-human primates appears to be rooted in two distinct mechanisms: a precise system for tracking and comparing small numbers of items simultaneously (up to 3 or 4 items) and an approximate system for estimating numerical magnitude of a group of objects. The most striking evidence that these two mechanisms are distinct comes from the apparent inability of young human infants and non-human primates to compare quantites across the small (<3 or 4)/large (>4) number boundary. We ask whether this distinction is present in lower animal species more distantly related to humans, guppies (Poecilia reticulata). We found that, like human infants and non-human primates, fish succeed at comparisons between large numbers only (5 vs. 10), succeed at comparisons between small numbers only (3 vs. 4), but systematically fail at comparisons that closely span the small/large boundary (3 vs. 5). Furthermore, increasing the distance between the small and large number resulted in successful discriminations (3 vs. 6, 3 vs. 7, and 3 vs. 9). This pattern of successes and failures is similar to those observed in human infants and non-human primates to suggest that the two systems are present and functionally distinct across a wide variety of animal species.  相似文献   

9.
Several species of primates, including humans, possess a spontaneous spatial mental arrangement (i.e. mental number line MNL) of increasing numbers or continuous quantities from left to right. This cognitive process has recently been documented in domestic chicken in a spatial–numerical task, opening the possibility that MNL is a cognitive capacity that has been conserved across vertebrate taxa. In this scenario, fish might possess the MNL as well. Here we investigated whether cleaner fish Labroides dimidiatus show evidence for MNL in two experiments. In Experiment I, we tested fish’s abilities in number discrimination, presenting simultaneously either small (2 vs 5) or large (5 vs 8) continuous quantities where one quantity was systematically rewarded. Experiment II used a protocol of an MNL task similar to the study on chickens. We trained cleaners with a target number (i.e. 5 elements), then we presented them with an identical pair of panels depicting either 2 elements or 8 elements, and we recorded their spontaneous choice for the left or right panel on each presentation. Cleaner fish showed high abilities in discriminating small and large numbers in Experiment I. Importantly, cleaners achieved this discrimination using numerical cues instead of non-numerical cues such as the cumulative surface area, density, and overall space. In contrast, cleaners did not allocate continuous quantities to space in Experiment II. Our findings suggest that cleaner fish possess numbering skills but they do not have an MNL. While similar studies on animals from various clades are needed to trace the evolution of MNL within vertebrates, our results suggest that this cognitive process might not be a capacity conserved across all vertebrate taxa.  相似文献   

10.
Human infants' discrimination of changes in internal and external elements of compound visual patterns was investigated in four experiments employing a familiarization-novelty paradigm in which visual reinforcing patterns were presented contingent upon rate of high-amplitude nonnutritive sucking. In Experiment 1, 4-month infants discriminated changes in the shape of internal, external and both internal and external figures. One-month infants discriminated external changes in both internal and external figures, but failed to show reliable response recovery when only internal figures were changed. Experiments 2 and 3 failed to explain the 1-month results on the basis of poor resolution of internal figures by showing comparable discrimination of small and large singly-presented figures and by failing to find improved internal discrimination with large separation between internal and external figures. In Experiment 4, 1-month infants showed response recovery to figure additions made adjacent to the initial figure, but not to internal additions. The results are interpreted in terms of attentiveness by young infants to external pattern elements and may indicate early processing of figure-ground information. The developmental differences observed suggest an increased breadth of attention to pattern elements.  相似文献   

11.
Infants’ ability to discriminate emotional facial expressions and tones of voice is well-established, yet little is known about infant discrimination of emotional body movements. Here, we asked if 10–20-month-old infants rely on high-level emotional cues or low-level motion related cues when discriminating between emotional point-light displays (PLDs). In Study 1, infants viewed 18 pairs of angry, happy, sad, or neutral PLDs. Infants looked more at angry vs. neutral, happy vs. neutral, and neutral vs. sad. Motion analyses revealed that infants preferred the PLD with more total body movement in each pairing. Study 2, in which infants viewed inverted versions of the same pairings, yielded similar findings except for sad-neutral. Study 3 directly paired all three emotional stimuli in both orientations. The angry and happy stimuli did not significantly differ in terms of total motion, but both had more motion than the sad stimuli. Infants looked more at angry vs. sad, more at happy vs. sad, and about equally to angry vs. happy in both orientations. Again, therefore, infants preferred PLDs with more total body movement. Overall, the results indicate that a low-level motion preference may drive infants’ discrimination of emotional human walking motions.  相似文献   

12.
Number sense in human infants   总被引:1,自引:0,他引:1  
Four experiments used a preferential looking method to investigate 6-month-old infants' capacity to represent numerosity in visual-spatial displays. Building on previous findings that such infants discriminate between arrays of eight versus 16 discs, but not eight versus 12 discs (Xu & Spelke, 2000), Experiments 1 and 2 investigated whether infants' numerosity discrimination depends on the ratio of the two set sizes with even larger numerosities. Infants successfully discriminated between arrays of 16 versus 32 discs, but not 16 versus 24 discs, providing evidence that their discrimination shows the set-size ratio signature of numerosity discrimination in human adults, children and many non-human animals. Experiments 3 and 4 addressed a controversy concerning infants' ability to discriminate large numerosities (observed under conditions that control for total filled area, array size and density, item size and correlated properties such as brightness: Brannon, 2002; Xu, 2003b; Xu & Spelke, 2000) versus small numerosities (not observed under conditions that control for total contour length: Clearfield & Mix, 1999). To investigate the sources of these differing findings, Experiment 3 tested infants' large-number discrimination with controls for contour length, and Experiment 4 tested small-number discrimination with controls for total filled area. Infants successfully discriminated the large-number displays but showed no evidence of discriminating the small-number displays. These findings provide evidence that infants have robust abilities to represent large numerosities. In contrast, infants may fail to represent small numerosities in visual-spatial arrays with continuous quantity controls, consistent with the thesis that separate systems serve to represent large versus small numerosities.  相似文献   

13.
Research demonstrating that infants discriminate between small (e.g., 1 vs. 3 dots) and large numerosities (e.g., 8 vs. 16 dots) is central to theories concerning the origins of human numerical abilities. To date, there has been no quantitative meta‐analysis of the infant numerical competency data. Here, we quantitatively synthesize the evidential value of the available literature on infant numerosity discrimination using a meta‐analytic tool called p‐curve. In p‐curve the distribution of available p‐values is analyzed to determine whether the published literature examining particular hypotheses contains evidential value. p‐curves demonstrated evidential value for the hypotheses that infants can discriminate between both small and large unimodal and cross‐modal numerosities. However, the analyses also revealed that the published data on infants’ ability to discriminate between large numerosities is less robust and statistically powered than the data on their ability to discriminate small numerosities. We argue there is a need for adequately powered replication studies to enable stronger inferences in order to use infant data to ground theories concerning the ontogenesis of numerical cognition.  相似文献   

14.
In three experiments, the effect of additional "contextual" elements on the discrimination of the orientation of linear and curvilinear segments was investigated with 4-month-old infants. In Experiment 1, paired visual matrices (one which contained some irregularity in orientation of internal elements, vs one which contained no irregularities) were presented. Infants detected irregular matrices significantly better than chance, but such detection was not aided by contextual elements. Discrimination of orientation in Experiment 2 was assessed with a paired-comparison familiarization-novelty paradigm. It was found that the addition of elements here significantly aided discrimination of linear segment orientation, but not curvilinear segment orientation. Experiment 3 investigated why this effect was not found for curvilinear segments; after equating the curvilinear stimuli to linear ones used in Experiment 2 with respect to the closedness of figure, discrimination of curvilinear orientation was observed.  相似文献   

15.
Behavioral research suggests two cognitive systems are at the foundations of numerical thinking: one for representing 1-3 objects in parallel and one for representing and comparing large, approximate numerical magnitudes. We tested for dissociable neural signatures of these systems in preverbal infants, by recording event-related potentials (ERPs) as 6-7.5 month-old infants (n = 32) viewed dot arrays containing either small (1-3) or large (8-32) sets of objects in a number alternation paradigm. If small and large numbers are represented by the same neural system, then the brain response to the arrays should scale with ratio for both number ranges, a behavioral and brain signature of the approximate numerical magnitude system obtained in animals and in human adults. Contrary to this prediction, a mid-latency positivity (P500) over parietal scalp sites was modulated by the ratio between successive large, but not small, numbers. Conversely, an earlier peaking positivity (P400) over occipital-temporal sites was modulated by the absolute cardinal value of small, but not large, numbers. These results provide evidence for two early developing systems of non-verbal numerical cognition: one that responds to small quantities as individual objects and a second that responds to large quantities as approximate numerical values. These brain signatures are functionally similar to those observed in previous studies of non-symbolic number with adults, suggesting that this dissociation may persist over vast differences in experience and formal training in mathematics.  相似文献   

16.
Origins of number sense. Large-number discrimination in human infants   总被引:13,自引:0,他引:13  
Four experiments investigated infants' sensitivity to large, approximate numerosities in auditory sequences. Prior studies provided evidence that 6-month-old infants discriminate large numerosities that differ by a ratio of 2.0, but not 1.5, when presented with arrays of visual forms in which many continuous variables are controlled. The present studies used a head-turn preference procedure to test for infants' numerosity discrimination with auditory sequences designed to control for element duration, sequence duration, interelement interval, and amount of acoustic energy. Six-month-old infants discriminated 16 from 8 sounds but failed to discriminate 12 from 8 sounds, providing evidence that the same 2.0 ratio limits numerosity discrimination in auditory-temporal sequences and visual-spatial arrays. Nine-month-old infants, in contrast, successfully discriminated 12 from 8 sounds, but not 10 from 8 sounds, providing evidence that numerosity discrimination increases in precision over development, prior to the emergence of language or symbolic counting.  相似文献   

17.
Feigenson L  Carey S 《Cognition》2005,97(3):295-313
Recent work suggests that infants rely on mechanisms of object-based attention and short-term memory to represent small numbers of objects. Such work shows that infants discriminate arrays containing 1, 2, or 3 objects, but fail with arrays greater than 3 [Feigenson, L., & Carey, S. (2003). Tracking individuals via object-files: Evidence from infants' manual search. Developmental Science, 6, 568-584; Feigenson, L., Carey, S., & Hauser, M. (2002). The representations underlying infants' choice of more: Object files versus analog magnitudes. Psychological Science, 13(2), 150-156]. However, little is known about how infants represent arrays exceeding the 3-item limit of parallel representation. We explored possible formats by which infants might represent a 4-object array. Experiment 1 used a manual search paradigm to show that infants successfully discriminated between arrays of 1 vs. 2, 2 vs. 3, and 1 vs. 3 objects. However, infants failed to discriminate 1 vs. 4 despite the highly discriminable ratio, providing the strongest evidence to date for object-file representations underlying performance in this task. Experiment 2 replicated this dramatic failure to discriminate 1 from 4 in a second paradigm, a cracker choice task. We then showed that infants in the choice task succeeded at choosing the larger quantity with 0 vs. 4 crackers and with 1 small vs. 4 large crackers. These results suggest that while infants failed to represent 4 as “exactly 4”, “approximately 4”, “3”, or as even as “a plurality”, they did represent information about the array, including the existence of a cracker or cracker-material and the size of the individual objects in the array.  相似文献   

18.
When enumerating small sets of elements nonverbally, human infants often show a set‐size limitation whereby they are unable to represent sets larger than three elements. This finding has been interpreted as evidence that infants spontaneously represent small numbers with an object‐file system instead of an analog magnitude system ( Feigenson, Dehaene & Spelke, 2004 ). In contrast, non‐human animals and adult humans have been shown to rely on analog magnitudes for representing both small and large numbers ( Brannon & Terrace, 1998 ; Cantlon & Brannon, 2007 ; Cordes, Gelman, Gallistel & Whalen, 2001). Here we demonstrate that, like adults and non‐human animals, children as young as 3 years of age spontaneously employ analog magnitude representations to enumerate both small and large sets. Moreover, we show that children spontaneously attend to numerical value in lieu of cumulative surface area. These findings provide evidence of young children’s greater sensitivity to number relative to other quantities and demonstrate continuity in the process they spontaneously recruit to judge small and large values.  相似文献   

19.
In Experiment 1, with the number of sides or angles of irregular polygons as cues, programmed training, and a 90% correct criterion (36 of 40), 2 squirrel monkeys' (Saimiri sciureus sciureus and S. boliviensus boliviensus) best performances were to discriminate heptagons from octagons, a 3rd's best was hexagons from heptagons, and a 4th's best was pentagons from heptagons. In Experiment 2, on most trials 2 polygons on one or both discriminanda had to be summed to determine which discrimination had the total fewer sides. Only 1 monkey met criterion (27 of 30) on the 2 tasks, 6 vs. 8 and 7 vs. 8 sides, but the other 3 performed better than chance on the 6 vs. 8 task. We conclude that previous studies of animals' discrimination of polygons in terms of complexity were minimally relevant to this work, and counting and subitizing were rejected in favor of a prototype-matching process to explain our monkeys' performances.  相似文献   

20.
In the first year of life, infants possess two cognitive systems encoding numerical information: one for processing the numerosity of sets of 4 or more items, and the second for tracking up to 3 objects in parallel. While a previous study showed the former system to be already present a few hours after birth, it is unknown whether the latter system is functional at this age. Here, we adapt the auditory‐visual matching paradigm that previously revealed sensitivity to large numerosities to test sensitivity to numerosities spanning the range from 2 to 12. Across studies, newborns discriminated pairs of large numerosities in a 3:1 ratio, even when the smaller numerosity was 3 (3 vs. 9). In contrast, newborn infants failed to discriminate pairs including the numerosity 2, even at the same ratio (2 vs. 6). These findings mirror the dissociation that has been reported with older infants, albeit with a discontinuity situated between numerosities 2 and 3. Two alternative explanations are compatible with our results: either newborn infants have a separate system for processing small sets, and the capacity of this system is limited to 2 objects; or newborn infants possess only one system to represent numerosities, and this system either is not functional or is extremely imprecise when it is applied to small numerosities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号