首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous research from our laboratory has implicated the basolateral amygdala (BLA) complex in the acquisition and consolidation of cue-cocaine associations, as well as extinction learning, which may regulate the long-lasting control of conditioned stimuli (CS) over drug-seeking behavior. Given the well established role of NMDA glutamate receptor activation in other forms of amygdalar-based learning, we predicted that BLA-mediated drug-cue associative learning would be NMDA receptor dependent. To test this hypothesis, male Sprague-Dawley rats self-administered i.v. cocaine (0.6 mg/kg/infusion) in the absence of explicit CS pairings (2-h sessions, 5 days), followed by a single 1-h classical conditioning (CC) session, during which they received passive infusions of cocaine discretely paired with a light+tone stimulus complex. Following additional cocaine self-administration sessions in the absence of the CS (2-h sessions, 5 days) and extinction training sessions (no cocaine or CS presentation, 2-h sessions, 7 days), the ability of the CS to reinstate cocaine-seeking on three test days was assessed. Rats received bilateral intra-BLA infusions (0.5 microl/hemisphere) of vehicle or the selective NMDA receptor antagonist, 2-amino-5-phosphonovalerate (AP-5), immediately prior to the CC session (acquisition), immediately following the CC session (consolidation), or immediately following reinstatement testing (consolidation of conditioned-cued extinction learning). AP-5 administered before or after CC attenuated subsequent CS-induced reinstatement, whereas AP-5 administered immediately following the first two reinstatement tests impaired the extinction of cocaine-seeking behavior. These results suggest that NMDA receptor-mediated mechanisms within the BLA play a crucial role in the consolidation of drug-CS associations into long-term memories that, in turn, drive cocaine-seeking during relapse.  相似文献   

2.
The basolateral amygdala (BLA) and the dorsal hippocampus (dHPC) are both structures with key roles in contextual fear conditioning. During fear conditioning, it is postulated that contextual representations of the environment are formed in the hippocampus, which are then associated with foot shock in the amygdala. However, it is not known to what extent a functional connection between these two structures is required. This study investigated the effect on contextual and cued fear conditioning of disconnecting the BLA and dHPC, using asymmetrically placed, excitotoxic unilateral lesions. Post-training lesions selectively impaired contextual, but not cued, fear, while pretraining lesions resulted in a similar but nonsignificant pattern of results. This effect was unexpectedly observed in both the contralateral disconnection group and the anticipated ipsilateral control, which prompted further examination of individual unilateral lesions of BLA and dHPC. Post-training unilateral dHPC lesions had no effect on contextual fear memories while bilateral dHPC lesions and unilateral BLA lesions resulted in a near total abolition of contextual fear but not cued conditioned fear. Again, pretraining unilateral BLA lesions resulted in a strong but nonsignificant trend to the impairment of contextual fear. Furthermore, an analysis of context test-induced Fos protein expression in the BLA contralateral to the lesion site revealed no differences between post-training SHAM and unilateral BLA lesioned animals. Therefore, post-training unilateral lesions of the BLA are sufficient to severely impair contextual, but not cued, fear memories.  相似文献   

3.
Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B). Rats were subsequently tested in the training context, A (ABA), or the extinction context, B (ABB). Pre-test injections of the glutamate AMPA receptor antagonist, NBQX (1 μg) into AcbSh had no effect on renewal of alcoholic beer seeking when rats were returned to the training context (ABA). However, NBQX increased responding when rats were tested in the extinction context (ABB). In a second experiment, rats received training, extinction, and test in the same context. Pre-test injections of NBQX (0, 0.3, and 1 μg) into the AcbSh dose-dependently attenuated expression of extinction. We also found that NBQX in the AcbSh had no effect on initial acquisition of extinction or the motivation to respond for reward as measured by break point on a progressive ratio schedule. Finally, we show that pharmacological disconnection of a basolateral amygdala (BLA) → AcbSh pathway via NBQX in AcbSh combined with reversible inactivation of the contralateral BLA attenuates expression of extinction. Together, these results suggest that AcbSh AMPA receptors mediate expression of extinguished reward seeking through glutamatergic inputs from the BLA.  相似文献   

4.
Contexts and discrete cues associated with drug-taking are often responsible for relapse among addicts. Animal models have shown that interference with the reconsolidation of drug-cue memories can reduce seeking of drugs or drug-paired stimuli. One such model is conditioned place preference (CPP) in which an animal is trained to associate a particular environment with the rewarding effects of a drug. Previous work from this laboratory has shown that intra-nucleus accumbens core infusions of a MEK inhibitor can interfere with reconsolidation of these drug-cue memories. A question that remains is whether post-retrieval drug effects on subsequent memories represent an interference with reconsolidation processes or rather a facilitation of extinction. In this experiment, we explore the effect of post-retrieval injections of propranolol, a beta-adrenergic receptor antagonist, on reconsolidation and extinction of cocaine CPP. After acquisition of cocaine CPP, animals were given post-retrieval propranolol injections once or each day during a protocol of unreinforced preference tests, until the animals showed no preference for the previously cocaine-paired environment. Following a cocaine priming injection, the animals that received daily post-test propranolol injections did not reinstate their preference for the drug-paired side. In contrast, a single post-retrieval propranolol injection followed by multiple days of unreinforced preference tests failed to blunt subsequent cocaine reinstatement of the memory. These data suggest that daily post-retrieval systemic injections of propranolol decrease the conditioned preference by interfering with reconsolidation of the memory for the association between the drug-paired side and the reinforcing effects of the drug, rather than facilitating new extinction learning.  相似文献   

5.
It has been suggested that retrieval during a nonreinforced test induces reconsolidation instead of extinction of the mnemonic trace. Reconsolidation would preserve the original memory from the labilization induced by its nonreinforced recall through a hitherto uncharacterized mechanism requiring protein synthesis. Given the importance that such a process would have in terms of maintaining, as part of the animal behavioral repertoire, a learned response that has been devalued by experience, we analyzed its existence for the memory associated with a one-trial, step-down inhibitory avoidance task (IA), a memory whose consolidation and extinction require protein synthesis in the CA1 region of the dorsal hippocampus (CA1) and involve the participation of the basolateral amygdala (BLA) and entorhinal cortex (ENT). Rats were trained in IA, and 24 h later they were submitted either to a pure reactivation session (retrieval without stepping down), which was unable by itself to initiate extinction of the avoidance response, or to a second training session. Fifteen minutes before or 3 h after either the reactivation or the retraining sessions, animals were infused with the protein synthesis inhibitor anisomycin (ANI) into CA1, BLA, or ENT. Contrary to the prediction of the reconsolidation hypothesis, none of these treatments affected subsequent memory retention. Because reconsolidation is regarded to be a direct consequence of retrieval, one would expect that, when given before a retention test or a pure reactivation session, enhancers of memory expression should permanently improve retention and, therefore, facilitate retrieval both in that and in subsequent sessions. Using two well-known retrieval enhancers, noradrenaline and adrenocorticotropin(1-24), we could not find any evidence suggestive of reconsolidation. Hence, our results indicate that there is no retrieval-induced, protein synthesis-dependent process that would cause reconsolidation of IA memory.  相似文献   

6.
Upon retrieval, consolidated memories are again rendered vulnerable to the action of metabolic blockers, notably protein synthesis inhibitors. This has led to the hypothesis that memories are reconsolidated at the time of retrieval, and that this depends on protein synthesis. Ample evidence indicates that the hippocampus plays a key role both in the consolidation and reconsolidation of different memories. Despite this fact, at present there are no studies about the consequences of hippocampal protein synthesis inhibition in the storage and post-retrieval persistence of object recognition memory. Here we report that infusion of the protein synthesis inhibitor anisomycin in the dorsal CA1 region immediately or 180 min but not 360 min after training impairs consolidation of long-term object recognition memory without affecting short-term memory, exploratory behavior, anxiety state, or hippocampal functionality. When given into CA1 after memory reactivation in the presence of familiar objects, ANI did not affect further retention. However, when administered into CA1 immediately after exposing animals to a novel and a familiar object, ANI impaired memory of both of them. The amnesic effect of ANI was long-lasting, did not happen after exposure to two novel objects, following exploration of the context alone, or in the absence of specific stimuli, suggesting that it was not reversible but was contingent on the reactivation of the consolidated trace in the presence of a salient, behaviorally relevant novel cue. Our results indicate that hippocampal protein synthesis is required during a limited post-training time window for consolidation of object recognition memory and show that the hippocampus is engaged during reconsolidation of this type of memory, maybe accruing new information into the original trace.  相似文献   

7.
Mammalian target of rapamycin (mTOR), a central regulator of protein synthesis in neurons, has been implicated in synaptic plasticity and memory. Here we show that mTOR inhibition by rapamycin in the basolateral amygdala (BLA) or dorsal hippocampus (DH) impairs both formation and reconsolidation of memory for inhibitory avoidance (IA) in rats. Male Wistar rats received bilateral infusions of vehicle or rapamycin into the BLA or DH before or after IA training or retrieval. Memory retention was tested at different time points after drug infusion. Rapamycin impaired long-term IA retention when given before or immediately after training or retrieval into the BLA. When infused into the DH, rapamycin produced memory impairment when given before training or immediately after retrieval. The impairing effects of post-retrieval rapamycin required memory retrieval and were not reversed by a reminder shock. The results provide the first evidence that mTOR in the BLA and DH might play a role in IA memory reconsolidation.  相似文献   

8.
Evidence from previous studies indicates that the noradrenergic and GABAergic influences within the basolateral amygdala (BLA) modulate the consolidation of memory for fear conditioning. The present experiments investigated whether the same modulatory influences are involved in regulating the extinction of fear-based learning. To investigate this issue, male Sprague Dawley rats implanted with unilateral or bilateral cannula aimed at the BLA were trained on a contextual fear conditioning (CFC) task and 24 and 48 h later were given extinction training. Immediately following each extinction session they received intra-BLA infusions of the GABAergic antagonist bicuculline (50 ng), the beta-adrenocepter antagonist propranolol (500 ng), bicuculline with propranolol, norepinephrine (NE) (0.3, 1.0, and 3.0 microg), the GABAergic agonist muscimol (125 ng), NE with muscimol or a control solution. To investigate the involvement of the dorsal hippocampus (DH) as a possible target of BLA activation during extinction, other animals were given infusions of muscimol (500 ng) via an ipsilateral cannula implanted in the DH. Bilateral BLA infusions of bicuculline significantly enhanced extinction, as did infusions into the right, but not left BLA. Propranolol infused into the right BLA together with bicuculline blocked the bicuculline-induced memory enhancement. Norepinephrine infused into the right BLA also enhanced extinction, and this effect was not blocked by co-infusions of muscimol. Additionally, muscimol infused into the DH did not attenuate the memory enhancing effects of norepinephrine infused into the BLA. These findings provide evidence that, as with original CFC learning, noradrenergic activation within the BLA modulates the consolidation of CFC extinction. The findings also suggest that the BLA influence on extinction is not mediated by an interaction with the dorsal hippocampus.  相似文献   

9.
Recent evidence indicates that certain forms of memory, upon recall, may return to a labile state requiring the synthesis of new proteins in order to preserve or reconsolidate the original memory trace. While the initial consolidation of "instrumental memories" has been shown to require de novo protein synthesis in the nucleus accumbens, it is not known whether memories of this type undergo protein synthesis-dependent reconsolidation. Here we show that low doses of the protein synthesis inhibitor anisomycin (ANI; 5 or 20 mg/kg) administered systemically in rats immediately after recall of a lever-pressing task potently impaired performance on the following daily test sessions. We determined that the nature of this impairment was attributable to conditioned taste aversion (CTA) to the sugar reinforcer used in the task rather than to mnemonic or motoric impairments. However, by substituting a novel flavored reinforcer (chocolate pellets) prior to the administration of doses of ANI (150 or 210 mg/kg) previously shown to cause amnesia, a strong CTA to chocolate was induced sparing any aversion to sugar. Importantly, when sugar was reintroduced on the following session, we found that memory for the task was not significantly affected by ANI. Thus, these data suggest that memory for a well-learned instrumental response does not require protein synthesis-dependent reconsolidation as a means of long-term maintenance.  相似文献   

10.
Following initial encoding, memories undergo a prolonged period of reorganization. While such reorganization may occur in many different memory systems, its purpose is not clear. Previously, we have shown that recall of recent contextual fear memories engages the dorsal hippocampus (dHPC). In contrast, recall of remote contextual fear memories engages a number of different cortical regions, including the anterior cingulate cortex (ACC). To examine whether this reorganization leads to greater memory stability, we examined reconsolidation of 1 d-old (recent) and 36 d-old (remote) contextual fear memory in mice. We infused the protein synthesis inhibitor, anisomycin (ANI), into either the dHPC or ACC immediately following retrieval of either a recent or remote contextual fear memory. In the dHPC, ANI infusions disrupted subsequent expression of recent, but not remote, contextual fear memory. Similar infusions into the ACC had no effect on either recent or remote contextual fear memories, whereas systemically applied ANI blocked subsequent remote memory expression when long re-exposure durations were used. Together, these data suggest that as memories mature they become increasingly stable. Furthermore, the dissociation between the effects of systemically and centrally administered ANI on remote memory suggests that stability is due, in part, to the distributed nature of remote contextual fear memories.  相似文献   

11.
基于记忆再巩固理论的恐惧记忆提取干预范式被证明可以有效消退恐惧记忆, 能克服传统消退容易复发的缺点。该范式通过单独呈现条件刺激激活原有恐惧记忆, 使记忆重返不稳定状态, 随后在再巩固时间窗内实施干预则能改写原有记忆。目前该范式起作用的神经机制尚不明确, 本文在现有的人类研究和动物研究基础上, 总结了杏仁核、前额叶和海马三个脑区在提取干预过程中的作用, 以及该领域研究的争议点, 为之后的研究提供思路。  相似文献   

12.
Nonreinforced retrieval can cause extinction and/or reconsolidation, two processes that affect subsequent retrieval in opposite ways. Using the Morris water maze task we show that, in the rat, repeated nonreinforced expression of spatial memory causes extinction, which is unaffected by inhibition of protein synthesis within the CA1 region of the dorsal hippocampus. However, if the number of nonreinforced retrieval trials is insufficient to induce long-lasting extinction, then a hippocampal protein synthesis-dependent reconsolidation process recovers the original memory. Inhibition of hippocampal protein synthesis after reversal learning sessions impairs retention of the reversed preference and blocks persistence of the original one, suggesting that reversal learning involves reconsolidation rather than extinction of the original memory. Our results suggest the existence of a hippocampal protein synthesis-dependent reconsolidation process that operates to recover or update retrieval-weakened memories from incomplete extinction.  相似文献   

13.
巩固的记忆被提取后,进入不稳定状态,再重新稳定下来,这个过程称为记忆再巩固。本文首先阐述人类记忆再巩固主要研究方法和经典范式,梳理记忆再巩固在人类恐惧记忆和情景记忆两个方面的相关研究,并从认知神经科学角度整理记忆再巩固的加工机制。然后总结记忆再巩固应用于创伤性应激障碍和药物成瘾等心理障碍临床治疗的相关文献。最后本文提出未来研究的方向和建议,希冀对人类记忆再巩固的理论研究和临床应用提供新思路。  相似文献   

14.
15.
16.
Initially-neutral cues paired with rewards are thought to acquire motivational significance, as if the incentive motivational value of the reward is transferred to the cue. Such cues may serve as secondary reinforcers to establish new learning, modulate the performance of instrumental action (Pavlovian-instrumental transfer, PIT), and be the targets of approach and other cue-directed behaviors. Here we examined the effects of lesions of the ventral striatal nucleus accumbens (ACb) and the basolateral amygdala (BLA) on the acquisition of discriminative autoshaped lever-pressing in rats. Insertion of one lever into the experimental chamber was reinforced by sucrose delivery, but insertion of another lever was not reinforced. Although sucrose was delivered independently of the rats' behavior, sham-lesioned rats rapidly came to press the reinforced but not the nonreinforced lever. Bilateral ACb lesions impaired the initial acquisition of sign-tracking but not its terminal levels. In contrast, BLA lesions produced substantial deficits in terminal levels of sign-tracking. Furthermore, whereas ACb lesions primarily affected the probability of lever press responses, BLA lesions mostly affected the rate of responding once it occurred. Finally, disconnection lesions that disrupted communication between ACb and BLA produced both sets of deficits. We suggest that ACb is important for initial acquisition of consummatory-like responses that incorporate hedonic aspects of the reward, while BLA serves to enhance such incentive salience once it is acquired.  相似文献   

17.
个体经历严重创伤性事件后可能会形成创伤后应激障碍(posttraumatic stress disorder, PTSD)。在创伤经历中形成的情绪记忆是以后发展为PTSD的重要病理机制。PTSD的形成涉及到情绪记忆的过度巩固, 而去甲肾上腺素能神经信号可增强情绪记忆的巩固和再巩固。因此, 在创伤记忆的巩固和再巩固期间阻断去甲肾上腺素能神经信号, 而在创伤记忆的消退期间增强去甲肾上腺素能神经信号, 可能会破坏和或抑制病理性的情绪记忆, 从而预防或治疗PTSD。  相似文献   

18.
记忆巩固需经觉醒状态下的信息编码和睡眠状态下的巩固阶段两个过程。记忆再巩固理论认为记忆巩固是一个需要多次反复巩固的过程,即使已巩固的记忆也会在提取激活后变得不稳定, 需经再巩固才能重返稳定状态, 此过程需要新的蛋白质的合成。记忆再巩固具有较强的时间特征, 发生在记忆巩固之后, 依赖于蛋白质降解的去稳定化阶段和依赖于蛋白质合成的记忆再稳定阶段, 所持续的时间窗为6 h。不同类型的记忆是否引发记忆再巩固或消退行为, 取决于提取试次暴露所持续时间的长短。  相似文献   

19.
Cyclic AMP response element binding protein (CREB) plays a critical role in fear memory formation. Here we determined the role of CREB selectively within the amygdala in reconsolidation and extinction of auditory fear. Viral overexpression of the inducible cAMP early repressor (ICER) or the dominant-negative mCREB, specifically within the lateral amygdala disrupted reconsolidation of auditory fear memories. In contrast, manipulations of CREB in the amygdala did not modify extinction of fear. These findings suggest that the role of CREB in modulation of memory after retrieval is dynamic and that CREB activity in the basolateral amygdala is involved in fear memory reconsolidation.  相似文献   

20.

Background

The role of glucocorticoids in extinction of traumatic memories has not been fully characterized despite its potential as a therapeutic target for acquired posttraumatic stress disorder (PTSD). The predator stress paradigm allows us to determine whether glucocorticoids mediate the extinction of both context-dependent and context-independent fear memories.

Methods

Male C57BL/6J mice were exposed to a predator (cat) then repeatedly exposed to the predator stress context in the absence of the cat. Context-dependent (associative) fear memory was assessed as suppression of activity during re-exposure to the predator stress context without the cat (extinction trials). Context-independent fear (non-associative) was assessed seven days after extinction trials using measures of hyperarousal and anxiety-like behaviours in environments unlike the predator stress context. To assess the role of glucocorticoids, mice were injected with metyrapone (50 mg/kg) 90 min prior to extinction trials in predator stressed mice and context-dependent and context-independent fear memories were assessed. Finally, metyrapone-treated predator stressed mice were injected with corticosterone (5 or 10 mg/kg) immediately following extinction trials and context-dependent and context-independent fear memories were assessed.

Results

Repeated re-exposure to the predator stress context without the cat present extinguished context-dependent fear memory, and also reduced hyperarousal, a generalized, chronic PTSD-like symptom. We show that extinction of context-independent predator stress-induced hyperarousal is dependent on endogenous glucocorticoids during the extinction trials. Furthermore, the inhibition of extinction by metyrapone on startle amplitude was reduced by exogenous administration of corticosterone following extinction trials. Overall, these data implicate glucocorticoids in the extinction of hyperarousal, a core symptom of PTSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号