首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loucks J 《Perception》2011,40(9):1047-1062
Recent evidence indicates that observers' sensitivity to configural information in dynamic human action is disrupted when action is inverted, whereas sensitivity to featural action information is not. The current research involved two experiments that expand upon this basic finding. Experiment 1 revealed that featural and configural action information are processed similarly in static representations of action as in dynamic action. Experiment 2 indicated that configural processing is uniquely sensitive to orientation only in human action as compared to a similar control stimulus. These findings further support the idea that the perception of action recruits specialized orientation-specific configural processing, and parallel similar findings in face perception and visual expertise.  相似文献   

2.
This article describes further evidence for a new neural network theory of biological motion perception. The theory clarifies why parallel streams V1----V2, V1----MT, and V1----V2----MT exist for static form and motion form processing among the areas V1, V2, and MT of visual cortex. The theory suggests that the static form system (Static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction-of-contrast and to direction-of-motion, whereas the motion form system (Motion BCS) generates emergent boundary segmentations whose outputs are insensitive to direction-of-contrast but sensitive to direction-of-motion. The theory is used to explain classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include beta motion, split motion, gamma motion and reverse-contrast gamma motion, delta motion, and visual inertia. Also included are the transition from group motion to element motion in response to a Ternus display as the interstimulus interval (ISI) decreases; group motion in response to a reverse-contrast Ternus display even at short ISIs; speed-up of motion velocity as interflash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size, various classical dependencies between flash duration, spatial separation, ISI, and motion threshold known as Korte's laws; dependence of motion strength on stimulus orientation and spatial frequency; short-range and long-range form-color interactions; and binocular interactions of flashes to different eyes.  相似文献   

3.
Prior knowledge about display inversion in biological motion perception   总被引:2,自引:0,他引:2  
Pavlova M  Sokolov A 《Perception》2003,32(8):937-946
Display inversion severely impedes veridical perception of point-light biological motion (Pavlova and Sokolov, 2000 Perception & Psychophysics 62 889-899; Sumi, 1984 Perception 13 283-286). Here, by using a spontaneous-recognition paradigm, we ask whether prior information about display orientation improves biological motion perception. Participants were shown a set of 180 degrees inverted point-light stimuli depicting a human walker and quadrupeds (dogs). In experiment 1, one group of observers was not aware of the orientation of stimuli, whereas the other group was told beforehand that stimuli will be presented upside down. In experiment 2, independent groups of participants informed about stimulus orientation saw the same set of stimuli, in each of which either a moving or a static background line was inserted. The findings indicate that information about display inversion is insufficient for reliable recognition of inverted point-light biological motion. Instead, prior information facilitates display recognition only when it is complemented by additional contextual elements. It appears that visual impressions from inverted point-light stimuli remain impenetrable with respect to one's knowledge about display orientation. The origins of orientation specificity in biological motion perception are discussed in relation to the recent neuroimaging data obtained with point-light stimuli and fragmented Mooney faces.  相似文献   

4.
Previous reports have demonstrated that the comprehension of sentences describing motion in a particular direction (toward, away, up, or down) is affected by concurrently viewing a stimulus that depicts motion in the same or opposite direction. We report 3 experiments that extend our understanding of the relation between perception and language processing in 2 ways. First, whereas most previous studies of the relation between perception and language processing have focused on visual perception, our data show that sentence processing can be affected by the concurrent processing of auditory stimuli. Second, it is shown that the relation between the processing of auditory stimuli and the processing of sentences depends on whether the sentences are presented in the auditory or visual modality.  相似文献   

5.
This article analyzes computational properties that clarify why the parallel cortical systems V1----V2, V1----MT, and V1----V2----MT exist for the perceptual processing of static visual forms and moving visual forms. The article describes a symmetry principle, called FM symmetry, that is predicted to govern the development of these parallel cortical systems by computing all possible ways of symmetrically gating sustained cells with transient cells and organizing these sustained-transient cells into opponent pairs of on-cells and off-cells whose output signals are insensitive to direction of contrast. This symmetric organization explains how the static form system (static BCS) generates emergent boundary segmentations whose outputs are insensitive to direction of contrast and insensitive to direction of motion, whereas the motion form system (motion BCS) generates emergent boundary segmentations whose outputs are insensitive to direction of contrast but sensitive to direction of motion. FM symmetry clarifies why the geometries of static and motion form perception differ--for example, why the opposite orientation of vertical is horizontal (90 degrees), but the opposite direction of up is down (180 degrees). Opposite orientations and directions are embedded in gated dipole opponent processes that are capable of antagonistic rebound. Negative afterimages, such as the MacKay and waterfall illusions, are hereby explained as are aftereffects of long-range apparent motion. These antagonistic rebounds help to control a dynamic balance between complementary perceptual states of resonance and reset. Resonance cooperatively links features into emergent boundary segmentations via positive feedback in a CC loop, and reset terminates a resonance when the image changes, thereby preventing massive smearing of percepts. These complementary preattentive states of resonance and reset are related to analogous states that govern attentive feature integration, learning, and memory search in adaptive resonance theory. The mechanism used in the V1----MT system to generate a wave of apparent motion between discrete flashes may also be used in other cortical systems to generate spatial shifts of attention. The theory suggests how the V1----V2----MT cortical stream helps to compute moving form in depth and how long-range apparent motion of illusory contours occurs. These results collectively argue against vision theories that espouse independent processing modules. Instead, specialized subsystems interact to overcome computational uncertainties and complementary deficiencies, to cooperatively bind features into context-sensitive resonances, and to realize symmetry principles that are predicted to govern the development of the visual cortex.  相似文献   

6.
Hanada M 《Perception》2010,39(11):1452-1465
Motion perception in a region is affected by motion in the surround regions. When a physically static or flickering stimulus surrounded by moving stimuli appears to move in the direction opposite to that of the surround motion, it is referred to as motion contrast. When the centre appears to move in the same direction, it is referred to as motion assimilation. We investigated how noise and luminance contrast affect motion induction by employing static and dynamic counterphase flickering targets. The tendency of motion assimilation was found to be stronger at a high noise level than at a low noise level for both static and dynamic targets. On the other hand, a decrease of luminance contrast tended to strengthen the tendency of motion contrast. However, the addition of noise and the decrease of luminance contrast decreased the visibility of motion comparably. These results suggest that the visual system changes the mode of motion induction according to the noise level, but not the visibility.  相似文献   

7.
Indirect evidence suggests that the contents of visual working memory may be maintained within sensory areas early in the visual hierarchy. We tested this possibility using a well-studied motion repulsion phenomenon in which perception of one direction of motion is distorted when another direction of motion is viewed simultaneously. We found that observers misperceived the actual direction of motion of a single motion stimulus if, while viewing that stimulus, they were holding a different motion direction in visual working memory. Control experiments showed that none of a variety of alternative explanations could account for this repulsion effect induced by working memory. Our findings provide compelling evidence that visual working memory representations directly interact with the same neural mechanisms as those involved in processing basic sensory events.  相似文献   

8.
In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa). Auditory aftereffects (i.e., a shift in the psychometric function for unimodal auditory motion perception) were bigger when a visual stimulus moved in the same direction as the sound than when no visual stimulus was presented. When the visual stimulus moved in the opposite direction, aftereffects were reversed and thus became contingent upon visual motion. When visual motion was combined with a stationary sound, no aftereffect was observed. These findings indicate that there are strong perceptual links between the visual and auditory motion-processing systems.  相似文献   

9.
L Welch  S F Bowne 《Perception》1990,19(4):425-435
The visual system must determine which elements in a scene to regard as parts of a single object and which to regard as different objects. We can create stimuli that are ambiguous, ie consistent with more than one interpretation, and ask in what situations the stimulus elements are interpreted as part of a single object and when they are interpreted as multiple objects. The ambiguous stimuli in this study were moving plaid patterns--the sum of two drifting gratings with different orientations. Observers may see a rigid coherent plaid object moving in one direction, or may see two gratings moving in different directions sliding over one another. When the gratings have similar contrasts they appear to cohere and only the plaid speed is perceptually available; when the gratings have different contrasts they appear to slide and only the speeds of the gratings are perceived. Coherence thus determines what speed information is passed to higher stages of motion processing. A two-stage model of plaid motion perception is presented which agrees with the model proposed by Adelson and Movshon and extends it, detailing the relationship between coherence and speed discrimination.  相似文献   

10.
Motion lines (MLs) are a pictorial technique used to represent object movement in a still picture. This study explored how MLs contribute to motion perception. In Experiment 1, we reported the creation of a motion illusion caused by MLs: random displacements of objects with MLs on each frame were perceived as unidirectional global motion along the pictorial motion direction implied by MLs. In Experiment 2, we showed that the illusory global motion in the peripheral visual field captured the perceived motion direction of random displacement of objects without MLs in the central visual field, and confirmed that the results in Experiment 1 did not stem simply from response bias, but resulted from perceptual processing. In Experiment 3, we showed that the spatial arrangement of orientation information rather than ML length is important for the illusory global motion. Our results indicate that the ML effect is based on perceptual processing rather than response bias, and that comparison of neighboring orientation components may underlie the determination of pictorial motion direction with MLs.  相似文献   

11.
The present paper reviews research on a haptic orientation processing. Central is a task in which a test bar has to be set parallel to a reference bar at another location. Introducing a delay between inspecting the reference bar and setting the test bar leads to a surprising improvement. Moreover, offering visual background information also elevates performance. Interestingly, (congenitally) blind individuals do not or to a weaker extent show the improvement with time, while in parallel to this, they appear to benefit less from spatial imagery processing. Together this strongly points to an important role for visual processing mechanisms in the perception of haptic inputs.  相似文献   

12.
关于孤独症谱系障碍个体探测生物运动的能力是否受损,已有行为研究尚存分歧。导致分歧的原因可能是实验刺激、实验任务和测量指标存在差异。然而,神经研究却一致证实其潜在的神经机制存在异常。领域特殊性观点认为该障碍可能是基于后侧颞上沟功能异常的社会性功能障碍,也可能是基于镜像神经元功能异常的社会性功能障碍;而领域一般性观点认为该障碍可能是基于背侧视觉流功能异常的视运动知觉障碍,也可能基于脑功能联结异常的弱中央统合障碍。据此,本文将从研究范式、行为表现及潜在机制三个方面梳理相关研究,以期为后续研究提供新方向。  相似文献   

13.
Strybel TZ  Vatakis A 《Perception》2004,33(9):1033-1048
Unimodal auditory and visual apparent motion (AM) and bimodal audiovisual AM were investigated to determine the effects of crossmodal integration on motion perception and direction-of-motion discrimination in each modality. To determine the optimal stimulus onset asynchrony (SOA) ranges for motion perception and direction discrimination, we initially measured unimodal visual and auditory AMs using one of four durations (50, 100, 200, or 400 ms) and ten SOAs (40-450 ms). In the bimodal conditions, auditory and visual AM were measured in the presence of temporally synchronous, spatially displaced distractors that were either congruent (moving in the same direction) or conflicting (moving in the opposite direction) with respect to target motion. Participants reported whether continuous motion was perceived and its direction. With unimodal auditory and visual AM, motion perception was affected differently by stimulus duration and SOA in the two modalities, while the opposite was observed for direction of motion. In the bimodal audiovisual AM condition, discriminating the direction of motion was affected only in the case of an auditory target. The perceived direction of auditory but not visual AM was reduced to chance levels when the crossmodal distractor direction was conflicting. Conversely, motion perception was unaffected by the distractor direction and, in some cases, the mere presence of a distractor facilitated movement perception.  相似文献   

14.
Aghdaee SM 《Perception》2005,34(2):155-162
When a single, moving stimulus is presented in the peripheral visual field, its direction of motion can be easily distinguished, but when the same stimulus is flanked by other similar moving stimuli, observers are unable to report its direction of motion. In this condition, known as 'crowding', specific features of visual stimuli do not access conscious perception. The aim of this study was to investigate whether adaptation to spiral motion is preserved in crowding conditions. Logarithmic spirals were used as adapting stimuli. A rotating spiral stimulus (target spiral) was presented, flanked by spirals of the same type, and observers were adapted to its motion. The observers' task was to report the rotational direction of a directionally ambiguous motion (test stimulus) presented afterwards. The directionally ambiguous motion consisted of a pair of spirals flickering in counterphase, which were mirror images of the target spiral. Although observers were not aware of the rotational direction of the target and identified it at chance levels, the direction of rotation reported by the observers during the test phase (motion aftereffect) was contrarotational to the direction of the adapting spiral. Since all contours of the adapting and test stimuli were 90 degrees apart, local motion detectors tuned to the directions of the mirror-image spiral should fail to respond, and therefore not adapt to the adapting spiral. Thus, any motion aftereffect observed should be attributed to adaptation of global motion detectors (ie rotation detectors). Hence, activation of rotation-selective cells is not necessarily correlated with conscious perception.  相似文献   

15.
L Mowafy 《Perception》1990,19(5):595-609
Models of motion perception usually assume that the visual system references spatial displacements to retinal coordinates, and not to three-dimensional coordinates recovered by a parallel process. The present studies investigated whether moving elements viewed in the context of a static random-dot stereogram could lead to the appearance of motion in depth. Observers judged the velocity of a monocular element translating horizontally in the stereo context as 'same as' or 'different to' that of a standard. Based on velocity constancy, if there was apparent motion in depth, the relative velocity judgments would yield a predictable pattern of errors. The first experiment compared two stereo contexts: a sloped surface versus a fronto-parallel plane at zero disparity. The results indicated an overall increase in the perceived velocity of the element moving in the sloped surface context. A similar pattern of results was found when surfaces differing in incline were compared. Experiment 2 explored the case of fronto-parallel planes at crossed and uncrossed disparities. Here depth differences did not systematically affect observers' judgments. It was concluded that in some cases motion analysis can be affected by three-dimensional disparity information and not by angular displacement alone.  相似文献   

16.
17.
A number of studies have investigated changes in the perception of visual motion as a result of altered sensory experiences. An animal study has shown that auditory-deprived cats exhibit enhanced performance in a visual movement detection task compared to hearing cats (Lomber, Meredith, & Kral, 2010). In humans, the behavioural evidence regarding the perception of motion is less clear. The present study investigated deaf and hearing adult participants using a movement localization task and a direction of motion task employing coherently-moving and static visual dot patterns. Overall, deaf and hearing participants did not differ in their movement localization performance, although within the deaf group, a left visual field advantage was found. When discriminating the direction of motion, however, deaf participants responded faster and tended to be more accurate when detecting small differences in direction compared with the hearing controls. These results conform to the view that visual abilities are enhanced after auditory deprivation and extend previous findings regarding visual motion processing in deaf individuals.  相似文献   

18.
A neural network model of global motion segmentation by visual cortex is described. Called the motion boundary contour system (BCS), the model clarifies how ambiguous local movements on a complex moving shape are actively reorganized into a coherent global motion signal, Unlike many previous researchers, we analyze how a coherent motion signal is imparted to all regions of a moving figure, not only to regions at which unambiguous motion signals exist. The model hereby suggests a solution to the global aperture problem. The motion BCS describes how preprocessing of motion signals by a motion oriented contrast (MOC) filter is joined to long-range cooperative grouping mechanisms in a motion cooperative-competitive (MOCC) loop to control phenomena such as motion capture. The motion BCS is computed in parallel with the static BCS of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the motion BCS and the static BCS, specialized to process motion directions and static orientations, respectively, support a unified explanation of many data about static form perception and motion form perception that have heretofore been unexplained or treated separately. Predictions about microscopic computational differences of the parallel cortical streams V1 → MT and V1 → V2 → MT are made— notably, the magnocellular thick stripe and parvocellular interstripe streams. It is shown how the motion BCS can compute motion directions that may be synthesized from multiple orientations with opposite directions of contrast. Interactions of model simple cells, complex cells, hyper-complex cells, and bipole cells are described, with special emphasis given to new functional roles in direction disambiguation for endstopping at multiple processing stages and to the dynamic interplay of spatially short-range and long-range interactions.  相似文献   

19.
Under what circumstances is the common motion of a group of elements more easily perceived when the elements differ in color and/or luminance polarity from their surround? Croner and Albright (1997), using a conventional global motion paradigm, first showed that motion coherence thresholds fell when target and distractor elements were made different in color. However, in their paradigm, there was a cue in the static view of the stimulus as to which elements belonged to the target. Arguably, in order to determine whether the visual system automatically groups, or prefilters, the image into different color maps for motion processing, such static form cues should be eliminated. Using various arrangements of the global motion stimulus in which we eliminated all static form cues, we found that global motion thresholds were no better when target and distractors differed in color than when they were identical, except under certain circumstances in which subjects had prior knowledge of the specific target color. We conclude that, in the absence of either static form cues or the possibility of selective attention to the target color, features with similar colors/luminance-polarities are not automatically grouped for global motion analysis.  相似文献   

20.
Encoding sensory events entails processing of several physical attributes. Is the processing of any of these attributes a pre-requisite of conscious awareness? This selective review examines a recent set of behavioral and event-related potentials, studies conducted in patients with visual and auditory unilateral neglect or extinction, with the aim of establishing what aspects of initial processing are impaired in these patients. These studies suggest that extinguished visual stimuli excite the sensory cortices, but perhaps to a lesser degree than acknowledged stimuli do. However, encoding spatial attributes of auditory and visual stimuli appear to be preferentially impaired. In light of results from patients with other neuro-behavioral deficits, it is argued that egocentric spatial information is an essential pre-requisite for knowing that an external event occurred. In contrast, information handled by mostly domain-specific circuits, such as in the ventral temporal lobe, supports awareness of the identity of a stimulus, but not of its mere presence. Without spatial information, the stimulus identity will remain implicit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号