首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to flexibly adapt to the changing demands of the environment is often reported as a core deficit in fragile X syndrome (FXS). However, the cognitive processes that determine this attentional set-shifting deficit remain elusive. The present study investigated attentional set-shifting ability in fragile X syndrome males with the well-validated intra/extra dimensional set-shifting paradigm (IED) which offers detailed assessment of rule learning, reversal learning, and attentional set-shifting ability within and between stimulus dimensions. A novel scoring method for IED stage errors was employed to interpret set-shifting failure in terms of repetitive decision-making, distraction to irrelevance, and set-maintenance failure. Performance of FXS males was compared to typically developing children matched on mental age, adults matched on chronological age, and individuals with Down syndrome matched on both mental and chronological age. Results revealed that a significant proportion of FXS males already failed prior to the intra-dimensional set-shift stage, whereas all control participants successfully completed the stages up to the crucial extra-dimensional set-shift. FXS males showed a specific weakness in reversal learning, which was characterized by repetitive decision-making during the reversal of newly acquired stimulus-response associations in the face of simple stimulus configurations. In contrast, when stimulus configurations became more complex, FXS males displayed increased distraction to irrelevant stimuli. These findings are interpreted in terms of the cognitive demands imposed by the stages of the IED in relation to the alleged neural deficits in FXS.  相似文献   

2.
Newborn screening for fragile X syndrome (FXS) is technically possible, and in the relatively near future accurate and inexpensive screening technologies are likely to be available. When that happens, will America's public health system adopt newborn screening for fragile X syndrome? This article addresses this issue by first placing screening for FXS in the context of the history and current status of newborn screening policy and practice. Lack of a proven medical treatment may stand as a barrier to newborn screening, but strong arguments can be made that early intervention provides important services for identified newborns and their families. Furthermore, other arguments could be used to justify newborn screening, including informed reproductive risk, medically necessary information, and consumer demand. Fragile X syndrome is offered as a prototype for many of the issues that will face society as more genetic disorders are discovered and new technologies for screening are developed.  相似文献   

3.
"If politics is the art of the possible, research is the art of the soluble. Both are immensely practical-minded affairs." P. B. Medawar.Gene therapy is unarguably the definitive way to treat, and possibly cure, genetic diseases. A straightforward concept in theory, in practice it has proven difficult to realize, even when directed to easily accessed somatic cell systems. Gene therapy for diseases in which the central nervous system (CNS) is the target organ presents even greater challenges and diverse vectors and brain delivery approaches are under investigation. We argue that in the case of the fragile X syndrome the approach most likely to have a chance of being effective should consist of a small, diffusible vector derived from the adeno-associated virus, carrying an FMR1 cDNA comprising the 5' promoter region and the 3' untranslated region of the gene, delivered to the entire brain by osmotic blood-brain barrier disruption. The approach can be tested in Fmr1 knockout mice, although changes in their neurobehavioral abnormalities may be difficult to evaluate. A defect in the expression of GABA(A) receptors in these mice-if shown to be a direct consequence of the Fmr1 defect-promises to be a more readily assessable marker of restored FMRp function on gene transfer.  相似文献   

4.
Fragile X syndrome (FXS), caused by a single gene mutation on the X chromosome, offers a unique opportunity for investigation of gene-brain-behavior relationships. Recent advances in molecular genetics, human brain imaging, and behavioral studies have started to unravel the complex pathways leading to the cognitive, psychiatric, and physical features that are unique to this syndrome. In this article, we summarize studies focused on the neuroanatomy and neuroendocrinology of FXS. A review of structural imaging studies of individuals with the full mutation shows that several brain regions are enlarged, including the hippocampus, amygdala, caudate nucleus, and thalamus, even after controlling for overall brain volume. These regions mediate several cognitive and behavioral functions known to be aberrant in FXS such as memory and learning, information and sensory processing, and social and emotional behavior. Two regions, the cerebellar vermis, important for a variety of cognitive tasks and regulation of motor behavior, and the superior temporal gyrus, involved in processing complex auditory stimuli, are reported to be reduced in size relative to controls. Functional imaging, typically limited to females, has emphasized that individuals with FXS do not adequately recruit brain regions that are normally utilized by unaffected individuals to carry out various cognitive tasks, such as arithmetic processing or visual memory tasks. Finally, we review a number of neuroendocrine studies implicating hypothalamic dysfunction in FXS, including abnormal activation of the hypothalamic-pituitary-adrenal (HPA) axis. These studies may help to explain the abnormal stress responses, sleep abnormalities, and physical growth patterns commonly seen in affected individuals. In the future, innovative longitudinal studies to investigate development of neurobiologic and behavioral features over time, and ultimately empirical testing of pharmacological, behavioral, and even molecular genetic interventions using MRI are likely to yield significant positive changes in the lives of persons with FXS, as well as increase our understanding of the development of psychiatric and learning problems in the general population.  相似文献   

5.
Two studies were carried out to examine the persistence (Study 1) and characteristics (Study 2) of mathematics learning disability (MLD) in girls with Turner syndrome or fragile X during the primary school years (ages 5-9 years). In Study 1, the rate of MLD for each syndrome group exceeded the rate observed in a grade-matched comparison group, although the likelihood of MLD persisting through the primary school years was comparable for all three groups. In Study 2, formal and informal math skills were compared across the syndrome groups, a normative group, and children from the normative group who had MLD. Few differences were observed between the Turner syndrome and normative groups. Despite having rote counting and number representation skills comparable to those in the normative group, girls with fragile X had difficulty with counting rules (e.g., cardinality, number constancy). However, this difficulty did not distingush them from the MLD group. Overall, counting skills appear to distinguish the Turner syndrome and fragile X groups, suggesting that the specificity of math deficits emerges earlier for fragile X than Turner syndrome.  相似文献   

6.
Since the identification of the FMR1 gene basic research has been focused on the molecular characterization of the FMR1 gene product, the fragile X mental retardation protein (FMRP). Recent developments in fragile X research have provided new insights and knowledge about the physiological function of FMRP in the cell and the nerve cell in particular. Currently, compelling evidence suggests a role for FMRP in the transport/translation of dendritically localized mRNAs. In addition, the identification of some of the target mRNAs of FMRP have led to an increased interest in the neurobiology of the syndrome. This review highlights the role of FMRP in dendritic mRNA transport/translation in relation to synaptic plasticity, a molecular mechanism implicated in learning and memory.  相似文献   

7.
The aims of the present study are twofold: (1) to examine cortical morphology (CM) associated with alterations in cognition in fragile X syndrome (FXS); (2) to characterize the CM profile of FXS versus FXS with an autism diagnosis (FXS + Aut) as a preliminary attempt to further elucidate the behavioral distinctions between the two sub-groups. We used anatomical magnetic resonance imaging surface-based morphometry in 21 male children (FXS N = 11 and age [2.27-13.3] matched controls [C] N = 10). We found (1) increased whole hemispheric and lobar cortical volume, cortical thickness and cortical complexity bilaterally, yet insignificant changes in hemispheric surface area and gyrification index in FXS compared to C; (2) linear regression analyses revealed significant negative correlations between CM and cognition; (3) significant CM differences between FXS and FXS + Aut associated with their distinctive behavioral phenotypes. These findings are critical in understanding the neuropathophysiology of one of the most common intellectual deficiency syndromes associated with altered cognition as they provide human in vivo information about genetic control of CM and cognition.  相似文献   

8.
The voluntary and reflexive orienting abilities of persons with Down syndrome and fragile X syndrome, at average MA levels of approximately 4 and 7 years, were compared with an RT task. Reflexive orienting abilities appeared to develop in accordance with MA for the participants with Down syndrome but not for those with fragile X syndrome. However, both groups showed delayed voluntary orienting. The group differences in reflexive orienting at the low MA level reinforce the practice of separating etiologies and highlight the contribution of rudimentary attentional processes in the study of individuals with mental retardation.  相似文献   

9.
10.
Molecular analysis of the fragile X (FMR-1) gene identifies female fragile X carriers, but appropriate genetic counseling can only be provided if the limitations of the testing methods are understood. Molecular analysis of this gene is achieved with both the polymerase chain reaction (PCR) and Southern blot techniques. PCR is faster and can determine the actual number of CGG repeats, which modifies genetic counseling substantially. However, for a sizeable percentage of women, PCR alone is not conclusive, and Southern analysis is necessary to complete the study. While this procedure takes longer, it is usually conclusive. Women who present for genetic counseling and carrier testing in the second trimester of pregnancy need this information quickly, and for them the turn-around time is paramount. It is critical that genetic counselors understand these methods so that they can educate their clients and facilitate appropriate follow-up.  相似文献   

11.
Fragile X syndrome (FXS) is a well-recognized cause of mental retardation and developmental delay in males. Alongside the well-documented clinical characteristics of the condition, recent advances in technology and methodology have begun to define FXS at a number of different levels: genetic, brain structure and function, cognition, and behavior. This article suggests that the FXS phenotype is not merely a juxtaposition of spared and impaired functions but rather may be characterized by an inhibitory control deficit that interferes with the individual's ability to modulate output causing perseverative responding across various skill areas. It is further suggested that an inability to modulate arousal may be at least one cause for the inhibitory control deficit that typifies the FXS phenotype. The approach to understanding atypical development outlined here holds exciting promise for future research in FXS and other developmental disorders.  相似文献   

12.
Fragile X syndrome (FXS) is characterized by a pattern of morphological, functional, and molecular characteristics with, in at least some cases, apparent relationships among phenotypic features at different levels. Gross morphology differences in the sizes of some human brain regions are accompanied by fine structural alterations in the shapes and in the numbers of dendritic spines in both humans and the knockout mouse model. The excess number of spines, their immature appearance, and the impaired withdrawal of inappropriately oriented dendrites in FXS or the mouse model suggest impairment of neuronal maturation, including dendritic and spine pruning. It is not clear how these differences arise, although regionally or globally impaired translation of the mRNAs that interact with the Fmr1 protein product, FMRP, in the vicinity of the synapse, including genes involved in synapse development and plasticity and dendritic retraction, is certainly plausible. FMRP binds mRNA and may be involved in both transport and translation of the mRNAs it binds. The mRNAs it binds belong to multiple functional classes, apparently indicating that FMRP may impact multiple cellular processes. In one example, the glucocorticoid receptor, whose mRNA binds FMRP, regulates the stress-sensitive glucocorticosteroids. Both human FXS and the mouse model exhibit a protracted elevation in glucocorticosteroids after stress. Possible relationships of other genes to morphological and functional characteristics of FXS are also discussed.  相似文献   

13.
In addition to cognitive disability, fragile X syndrome (FXS) is associated with behavioral problems that are often functionally limiting. There are few controlled trials to guide treatment; however, available information does suggest that medications can be quite helpful for a number of categories of behavioral disturbance in FXS. Specifically, stimulants appear to be quite useful for management of distractibility, hyperactivity, and impulsive behavior; antidepressants help with anxiety, obsessive-compulsive behaviors and mood dysregulation; and antipsychotics can reduce aggression. These medications are supportive and help minimize dysfunctional behaviors and maximize functioning. As more is learned about the neural functions of FMRP, medications in the future will be expected to target specific synaptic mechanisms dysregulated in FXS brain and thus ameliorate the cognitive deficit with resultant behavioral improvements. This article summarizes knowledge about effectiveness and approaches to management of currently available psychopharmacology for behavior in FXS and discusses early leads to future treatments for cognition.  相似文献   

14.
There is evidence which demonstrates that a subset of males with a premutation CGG repeat expansion (between 55 and 200 repeats) of the fragile X mental retardation 1 gene exhibit subtle deficits of executive function that progressively deteriorate with increasing age and CGG repeat length. However, it remains unclear whether similar deficits, which may indicate the onset of more severe degeneration, are evident in female PM-carriers. In the present study we explore whether female PM-carriers exhibit deficits of executive function which parallel those of male PM-carriers. Fourteen female fragile X premutation carriers without fragile X-associated tremor/ataxia syndrome and fourteen age, sex, and IQ matched controls underwent ocular motor and neuropsychological tests of select executive processes, specifically of response inhibition and working memory. Group comparisons revealed poorer inhibitory control for female premutation carriers on ocular motor tasks, in addition to demonstrating some difficulties in behaviour self-regulation, when compared to controls. A negative correlation between CGG repeat length and antisaccade error rates for premutation carriers was also found. Our preliminary findings indicate that impaired inhibitory control may represent a phenotype characteristic which may be a sensitive risk biomarker within this female fragile X premutation population.  相似文献   

15.
Fragile X syndrome is a common genetic disorder associated with executive function deficits and poor mathematics achievement. In the present study, we examined changes in math performance during the elementary and middle school years in girls with fragile X syndrome, changes in the working memory loads under which children could complete a cognitive switching task, and the association between these two areas of function, in girls with fragile X syndrome relative to their peers. Our findings indicate that the trajectory of math and executive function skills of girls with fragile X differs from that of their peers and that these skills contribute to predicting math achievement and growth in math performance over time. Also, changes in math performance were associated with incremental increases in working memory demands, suggesting that girls with fragile X have a lower threshold for being able to perform under increasing task demands. Still, we found improvement in executive function performance between 10 and 12 years in girls with fragile X rather than a performance plateau as has been reported in other studies. The findings implicate the importance of early intervention in mathematics for girls with fragile X that addresses poor calculation skills, the supporting numerical skills, and deficits in executive functions, including working memory.  相似文献   

16.
Fragile X syndrome (FXS) is the leading inherited cause of mental retardation. In this article, we review what is known about the language and related problems of individuals with FXS. In doing so, we focus on the syndrome-specific features of the language phenotype and on the organismic (i.e., genetic and individual neurocognitive and behavioral) and environmental factors associated with within-syndrome variation in the phenotype. We also briefly review those aspects of the behavioral phenotype of FXS that are relevant for understanding syndrome-specific features of, and within-syndrome variability in, language. The review includes summaries of research on the prelinguistic foundations for language development and on each of the major components of language (i.e., vocabulary, morphosyntax, and pragmatics). Throughout the review, we point out implications of existing research for intervention as well as directions for future research.  相似文献   

17.
Data on the relationships between cognitive and physical phenotypes, and a deficit of fragile X mental retardation 1 (FMR1) gene-specific protein product, FMRP, are presented and discussed in context with earlier findings. The previously unpublished results obtained, using standard procedures of regression and correlations, showed highly significant associations in males between FMRP levels and the Wechsler summary and subtest scores and in females between these levels and the full-scale intelligence quotient (FSIQ), verbal and performance IQ, and some Wechsler subtest scores. The published results based on data from 144 extended families with fragile X, recruited from Australia and the United States within a collaborative NIH-supported project, were obtained using robust modification of maximum likelihood in pedigrees. The results indicated that processing speed, short-term memory, and the ability to control attention, especially in the context of regulating goal-directed behavior, may be primarily affected by the FMRP depletion. The effect of this depletion on physical phenotype was also demonstrated, especially on body and head height and extensibility of finger joints. It is recommended that further studies should rely on more accurate measures of FMRP levels, and use of larger samples, to overcome extensive variability in the data.  相似文献   

18.
The present study was designed to assess object identification ("what") and location ("where") skills among girls with fragile X or Turner syndrome and girls with neither disorder. Participants completed standardized subtests of visual perception and tasks of visuospatial "what" and "where" memory. Girls with fragile X had average performance on most object identification tasks, yet 53% failed to accurately recreate the gestalt of a design during the "where" memory task. Fewer than 7% of girls in the Turner or comparison group made this error. Girls with Turner syndrome had lower scores and longer response times on object perception tasks and had poorer recall of location for internal features of the design on the "where" memory task, relative to girls in the comparison or fragile X group. When limiting analyses to IQ-matched samples, correlations between math and visual perception tasks emerged, but only for girls with fragile X. These results reflect important differences between two cognitive phenotypes and have implications for the role of visuospatial processing in early math performance.  相似文献   

19.
20.
Fragile X syndrome is the world’s most common hereditary cause of developmental delay in males and is now well characterized at the biological, brain and cognitive levels. The disorder is caused by the silencing of a single gene on the X chromosome, the FMR1 gene. The premutation (carrier) status, however, is less well documented but has an emerging literature that highlights a more subtle profile of executive cognitive deficiencies that mirror those reported in fully affected males. Rarely, however, has the issue of age-related declines in cognitive performance in premutation males been addressed. In the present study, we focus specifically on the cognitive domain of working memory and its subcomponents (verbal, spatial and central executive memory) and explore performance across a broad sample of premutation males aged 18–69 years matched on age and IQ to unaffected comparison males. We further tease apart the premutation status into those males with symptoms of the newly identified neurodegenerative disorder, the fragile X-associated tremor/ataxia syndrome (FXTAS) and those males currently symptom-free. Our findings indicate a specific vulnerability in premutation males on tasks that require simultaneous manipulation and storage of new information, so-called executive control of memory. Furthermore, this vulnerability appears to exist regardless of the presence of FXTAS symptoms. Males with FXTAS symptoms demonstrated a more general impairment encompassing phonological working memory in addition to central executive working memory. Among asymptomatic premutation males, we observed the novel finding of a relationship between increased CGG repeat size and impairment to central executive working memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号