首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Myoelectric signals from several muscles of the lower limb were studied under various speed and stride length conditions. The main purpose was to determine invariant and variant features among these myoelectric patterns. A pattern recognition algorithm was used to analyze these activity patterns. Within-condition analysis revealed some common features among the EMG patterns. This suggests that the nervous system does not have to generate all the muscle activity patterns, only the common features that can, in appropriate combination, produce the necessary activity patterns. From the across condition analysis, the following rules emerged. First, both phasic component and magnitude (d.c. level) of the muscle activity patterns have to be modulated to meet the demands imposed by the various conditions. Second, the variability in the proximal muscle activity patterns across conditions are higher than the distal muscle activity patterns. Within each group, the extensor muscles and double-jointed muscles show greater variability than the flexor muscles and single-jointed muscles. And finally, the changes in the average value (d.c. level) of the muscle activity patterns across conditions are not uniform but show muscle and task specificity. For example, within the speed condition, the increase in d.c. level of the extensors with speed of locomotion show a proximal to distal trend. Based on these results, a conceptual model for the human locomotor control process is proposed.  相似文献   

2.
Myoelectric signals from several muscles of the lower limb were studied during treadmill locomotion over various inclines. A pattern recognition technique was used to analyse these activity patterns. The analyses revealed the following rules. These are common features among the various muscle activity patterns. The results suggest that the limb is controlled as a unit. Both phasic and average components of the muscle activity patterns are modulated to meet demands imposed by the various inclines. The distal muscles in general are more tightly controlled than the proximal muscles. The changes in average EMG values are muscle-specific, and are not similar for the stance and swing phases of the step cycle. On average, the proximal muscles show greater increases than the distal muscles. These results are compared with those found previously in the different speed and stride-length condition. Studies such as these shed light on the adaptability of the basic locomotor synergy.  相似文献   

3.
The authors applied principal component analysis to investigate muscle activation patterns (M-modes) involved in the automatic postural responses induced by external surface perturbations. They focused on M-mode modulations as responses to the effects of practice, stability of the conditions and perturbed directions. While peak center of mass velocity reduced with practice, M-modes were similar with practice and across stability conditions. In contrast, atypical sway mode coactivations that combined proximal trunk muscles with distal muscles of the opposite lower extremity of the ventral-dorsal side were observed under the unstable conditions in both forward and backward perturbations after practice. In addition, M-modes in the forward translations were characterized by increased cocontraction patterns. Results suggest that compositions of the underlying M-modes show minor differences in each perturbed direction, but practice enhances coactivation patterns combining proximal muscles with distal muscles, and with accompanying cocontraction patterns, under more challenging conditions.  相似文献   

4.
The visual correction employed during isometric contractions of large proximal muscles contributes variability to the descending command and alters fluctuations in muscle force. This study explored the contribution of visuomotor correction to isometric force fluctuations for the more distal dorsiflexor (DF) and plantarflexor (PF) muscles of the ankle. Twenty-one healthy adults performed steady isometric contractions with the DF and PF muscles both with (VIS) and without (NOVIS) visual feedback of the force. The target forces exerted ranged from 2.5% to 80% MVC. The standard deviation (SD) and coefficient of variation (CV) of force was measured from the detrended (drift removed) VIS and NOVIS steadiness trials. Removal of VIS reduced the CV of force by 19% overall. The reduction in fluctuations without VIS was significant across a large range of target forces and was more consistent for the PF than the DF muscles. Thus, visuomotor correction contributes to the variability of force during isometric contractions of the ankle dorsiflexors and plantarflexors.  相似文献   

5.
The variability of handedness with different tasks is discussed. Experiments are described which show under what conditions handedness becomes evident. Tasks involving three different levels of complexity were used. The simplest task measured the accuracy with which a particular pressure could be reproduced in isometric contraction of the flexors of the index finger on each side in 21 female subjects. In the second situation, the maximum speed of making an attempted tapping movement under the same conditions, was measured in ten of the same subjects using the same muscle group alternating with its antagonists. The same ten subjects were also tested on an aiming task which provided the third level of complexity. The results suggest that differences in performance between the two sides only occur where “timing” or the serial organization of muscle activity is required and that such differences may be due to training.

Whether handedness is inherited or acquired is briefly discussed, and a second series of experiments using the same tasks as before were carried out on one female and nine male subjects. In this instance, the first two tests were used on the big toe of each side as well as the index finger. The results confirm that differences in performance between the two sides on these tasks can be adequately explained in terms of usage or training.

The hypothesis that “timing” is therefore important in the learning of any movement where serial muscle contractions arc involved was tested and confirmed in a third experimental series. The consistency of timing of the application of force in turning a crank handle at maximum speed was measured in five male subjects before and after training. The implications of the results are discussed in relation to other researches on skills.  相似文献   

6.
Bilateral deficit (BLD) describes a phenomenon that the force produced during maximal simultaneous bilateral contraction is lower than the sum of those produced unilaterally. The aim of this study was to examine the potential sex-related differences in BLD in upper body proximal and distal limb muscles. Ten men and eight women performed single-joint maximal contractions with their elbow flexors and index finger abductors at separate laboratory visits, during which the maximal isometric voluntary contractions (MVICs) were performed unilaterally and bilaterally with a randomized order in the designated muscle group. Surface electromyographic (EMG) signals were recorded from the prime movers of the designated muscle groups (biceps brachii and first dorsal interosseous) during the maximal contractions. Both men and women demonstrated BLD in their elbow flexors (deficit: men = −11.0 ± 6.3%; women = −10.2 ± 5.0%). Accompanied by this force deficit was the reduced EMG amplitude from the dominant biceps brachii (collapsed across sex: p = 0.045). For the index finger abductors, only men (deficit = −13.7 ± 6.1%), but not women showed BLD. Our results suggested that the BLD in the proximal muscle group is likely induced by the decreased maximal muscle activity from the dominant prime mover. The absence of BLD in women’s index finger muscle is largely due to the inter-subject variability possibly related to the sex hormone flux and unique levels of interhemispheric inhibition.  相似文献   

7.
Poor upper-limb coordination is a common difficulty for children with developmental coordination disorder (DCD). One hypothesis is that deviant muscle timing in proximal muscle groups results in poor postural and movement control. The relationship between muscle timing, arm motion and children's upper-limb coordination deficits has not previously been studied. The aim of this study was to investigate the relationship between functional difficulties with upper-limb motor skills and neuromuscular components of postural stability and coordination. Sixty-four children aged 8-10 years, 32 with DCD and 32 without DCD, participated in the study. The study investigated timing of muscle activity and resultant arm movement during a rapid, voluntary, goal-directed arm movement. Results showed that compared to children without DCD, children with DCD took significantly longer to respond to visual signals and longer to complete the goal-directed movement. Children with DCD also demonstrated altered activity in postural muscles. In particular, shoulder muscles, except for serratus anterior, and posterior trunk muscles demonstrated early activation. Further, anterior trunk muscles demonstrated delayed activation. In children with DCD, anticipatory function was not present in three of the four anterior trunk muscles. These differences support the hypothesis that in children with DCD, altered postural muscle activity may contribute to poor proximal stability and consequently poor arm movement control when performing goal-directed movement. These results have educational and functional implications for children at school and during activities of daily living and leisure activities and for clinicians assessing and treating children with DCD.  相似文献   

8.
Monosynaptic and polysynaptic spinal level reflexes in the leg muscles of infants show significant dispersion across muscles, high variability, and no change in response patterns over the first 10 months. Here we tested the hypothesized relation between early walking experience and the tuning of these responses in three primary gait muscles of participants in four subgroups: cruisers (n = 7) and toddlers with one (n = 5), two (n = 5), or three (n = 5) months of walking experience. Reflex responses in multiple Ia pathways – tendon reflex (T-reflex), vibration-induced inhibition of the T-reflex (VIM-T-reflex), and tonic vibration-induced reflex (VIR), were elicited by mechanical stimuli applied to the distal tendons of the quadriceps, gastrocnemius-soleus, and tibialis anterior of both legs. Walking skill was assessed via a GAITRite mat. Generally, walking experience seemed to be related to slowly emerging improvements and, depending on muscle tested and pathway, progress was quite varied. Amplitude and latency of reflex responses were more clearly impacted by age or leg length while the ratio or distribution pattern of reflex response among antagonist pairs of muscles was impacted by walking experience and skill. As walking experience increased, the ratio of reflex responses tended to increase for the stimulated and decrease for the antagonist reflex loops with distribution of the pattern shifting gradually toward a single type of reflex response in all tested muscles. The very slow tuning of these reflexes may underlie the many missteps and falls reported to occur during early walking and suggest that subsequent studies should continue to follow the developmental trajectory through the first year of walking experience.  相似文献   

9.
Early locomotor behavior has been the focus of considerable attention by developmentalists over several decades. Few studies have addressed explicitly patterns of muscle activity that underlie this coordination pattern. Our purposes were to illustrate a method to determine objectively the onset and offset of muscle firings during early walking and to investigate the emergence of patterns of activation of the core locomotor muscles. We tested eight toddlers as they walked overground at walking onset (max. of 3-6 independent steps) and after three months of walking experience. Surface electrodes monitored activity of the gastrocnemius, tibialis anterior, quadriceps, and hamstrings. We reduced EMG signals to a frame-by-frame designation of "on-off," followed by muscle state and co-contraction analyses, and probability distributions for each muscle's activity across multiple cycles. Our results clearly show that at walking onset muscle activity was highly variable with few, if any, muscles showing recurring patterns of behavior, within or among toddlers. Variability and co-activation decreased with walking experience but remained inconsistent, in contrast to the significant increase in stability shown for joint coordination and endpoint (foot placement) parameters. We propose this trend emerges because of the high number of options (muscle combinations) available. Toddlers learn first to marshal sufficient force to balance and make forward progress but slowly discover how to optimize these resources.  相似文献   

10.
It is proposed that an aspect of the effector organization process is the gradation of the response. Gradation was investigated in a hand cranking task by using strain-gauge and electromyographic recording techniques. Criteria of gradation were related to (a) the impulsive force at a particular point in the cycle of movement, (b) an index of the work done per unit of time, (c) the degree of muscle activity in each of the 6 muscles analyzed, and (d) an index of muscle activity based on the pen deflection of an EMG record. Further, two criteria of the organization of the force were employed — the force range and the consistency of the force range. None of the criteria of gradation was closely related to speed of performance, but the organizational criteria showed a trend toward being related to speed. The implications of these findings are discussed.  相似文献   

11.
The peak amplitude of EMG activity was measured from the orbicularis oris superior (OOS), orbicularis oris inferior (OOI), and masseter muscles for three normal, geriatric women (range 70 to 75 yr.) and compared with prior data for a group of normal, 4- and 8-yr.-old children and young adults (range 21 to 29 yr.). The elderly groups' variability across the three muscles paralleled that of the 4-yr.-olds, suggesting that speech-motor equivalence returns to an earlier level of operation in aging speakers. Also, the elderly subjects evidenced reduced levels of average peak EMG activity as compared to those of the other groups. This finding was interpreted as reflecting a loss of general muscle function, a possible concomitant of facial muscle atrophy that accompanies advanced age.  相似文献   

12.
Recent studies with infants and adults demonstrate a facilitative role of labels in object categorization. A common interpretation is that labels highlight commonalities between objects. However, direct evidence for such a mechanism is lacking. Using a novel object category with spatially separate features that are either of low or high variability across the stimulus set, we tracked 12‐month‐olds’ attention to object features during learning and at test. Learning occurred in both conditions, but what was learned depended on whether or not labels were heard. A detailed analysis of eye movements revealed that infants in the two conditions employed different object processing strategies. In the silent condition, looking patterns were governed exclusively by the variability of object parts. In the label condition, infants’ categorization performance was linked to their relative attention to commonalities. Moreover, the commonality focus persisted after learning even in the absence of labels. These findings constitute the first experimental evidence that labels induce a persistent focus on commonalities.  相似文献   

13.
The aim of this study was to investigate anticipatory (APA), simultaneous (SPA) and compensatory (CPA) postural adjustments in individuals with and without chronic ankle instability (CAI) as they kicked a ball while standing in a single-leg stance on a stable and unstable surface. Electromyographic activity (EMG) of postural muscles and center of pressure (COP) displacements were calculated and their magnitudes analyzed during the postural adjustment intervals. Additionally, the COP area of sway was calculated over the duration of the whole task. The activities of postural muscles were also studied using principal component analysis (PCA) to identify between-group differences in patterns of muscle activation. The individuals with CAI showed reduced magnitude of EMG at the muscles around the ankle while around the hip the activity was increased. These were associated with a reduction in balance sway across the entire task, as compared with the control group. The PCA revealed that CAI participants assemble different sets of muscle activation to compensate for their ankle instability, primarily activating hip/spine muscles. These results set up potential investigations to examine whether balance control interventions enhance these adaptations or revert them to a normal pattern as well as if any of these changes proactively address recurrent ankle sprain conditions.  相似文献   

14.
Current evidence suggests that movement quality is impacted by postural adjustments made in advance of planned movement. The trunk inevitably plays a key role in these adjustments, by creating a stable foundation for limb movement. The purpose of this study was to examine anticipatory trunk muscle activity during functional tasks in children with and without developmental coordination disorder (DCD). Eleven children with DCD (age 7 to 14 years) and 11 age-matched, typically-developing children performed three tasks: kicking a ball, climbing stairs, and single leg balance. Surface electromyography (EMG) was used to examine the neuromuscular activity of bilateral transversus abdominis/internal oblique, external oblique and L3/4 erector spinae, as well as the right tibialis anterior and rectus femoris muscles. Onset latencies for each muscle were calculated relative to the onset of rectus femoris activity. In comparison to the children with DCD, the typically-developing children demonstrated earlier onsets for right tibialis anterior, bilateral external oblique, and right transversus abdominis/internal oblique muscles. These results suggest that anticipatory postural adjustments may be associated with movement problems in children with DCD, and that timing of both proximal and distal muscles should be considered when designing intervention programs for children with DCD.  相似文献   

15.
The effects of passive interpersonal light touch (PILT) on postural stability can be observed through improved postural coordination through haptic feedback from the contact provider to the contact receiver while walking. It is unclear, however, whether PILT affects the contact receiver's detailed physical responses, such as muscle activity, body sway, and joint movements. In this study, surface electromyography and an inertial measurement unit were used simultaneously to explore changes in walking speed and control responses induced by PILT. We evaluated fourteen healthy participants for their walking speed and physical responses under two walking conditions: no-touch (NT) and PILT. As a physical response during walking, we measured muscle activity (rectus femoris, semitendinosus, tibialis anterior, and soleus muscles), body sway (pelvis and neck), and joint angles (direction of hip, knee, and ankle joint movements). In PILT condition, fingertip contact force was measured while the contact provider touched the third level of the recipient's lumbar spine. In comparison with the NT condition, PILT condition increased walking speed and decreased body sway on neck position. There were significant correlations between walking speed and neck sway regarding NT and PILT change values. Passive haptic information to the contact receiver may assist in the smooth shift of the center of gravity position during gait through interpersonal postural coordination. These findings suggest that PILT may provide an efficient and stable gait.  相似文献   

16.
The growth of stability: postural control from a development perspective   总被引:5,自引:0,他引:5  
This study compared central nervous system organizational processes underlying balance in children of three age groups: 15-31 months, 4-6 years, and 7-10 years, using a movable platform capable of antero-posterior (A-P) displacements or dorsi-plantar flexing rotations of the ankle joint. A servo system capable of linking platform rotations to A-P sway angle allowed disruption of ankle joint inputs, to test the effects of incongruent sensory inputs on response patterns. Surface electromyography was used to quantify latency and response patterns. Surface electromyography was used to quantify latency and amplitude of the gastrocnemius, hamstrings, tibialis anterior, and quadriceps muscle responses. Cinematography provided biomechanical analysis of the sway motion. Results demonstrated that while directionally specific response synergies are present in children under the age of six, structured organization of the synergies is not yet fully developed since variability in timing and amplitude relationships between proximal and distal muscles is high. Transition from immature to mature response patterns was not linear but stage-like with greatest variability in the 4- to 6- year-old children. Results from balance tests under altered sensory conditions (eyes closed and/or ankle joint inputs altered) suggested that: (a) with development a shift in controlling inputs to posture from visual dependence to more adult-like dependence on a combination of ankle joint and visual inputs occurred in the 4- to 6-year-old, and reached adult form in the 7- to 10-year-old age group. It is proposed that the age 4-6 is a transition period in the development of posture control. At this time the nervous system (a) uses visual-vestibular inputs to fine tune ankle-joint proprioception in preparation for its increased importance in posture control and (b) fine tunes the structural organization of the postural synergies themselves.  相似文献   

17.
We investigated whether and how the movement initiation condition (IC) encountered during the early movements performed following focal muscle fatigue affects the postural control of discrete ballistic movements. For this purpose, subjects performed shoulder flexions in a standing posture at maximal velocity under two movement IC, i.e., in self-paced conditions and submitted to a Stroop-like task in which participants had to trigger fast shoulder flexions at the presentation of incongruent colors. Shoulder flexion kinematics, surface muscle activity of focal and postural muscles as well as center-of-pressure kinematics were recorded. The initial IC and the order in which subjects were submitted to these two conditions were varied within two separate experimental sessions. IC schedule was repeated before and after fatigue protocols involving shoulder flexors. The aim of this fatigue procedure was to affect acceleration-generating capacities of focal muscles. In such conditions, the postural muscle activity preceding and accompanying movement execution is expected to decrease. Following fatigue, when subjects initially moved in self-paced conditions, postural muscle activity decreased and scaled to the lower focal peak acceleration. This postural strategy then transferred to the Stroop-like task. In contrast, when subjects initially moved submitted to the Stroop-like task, postural muscle activity did not decrease and this transferred to self-paced movements. Regarding the center-of-pressure peak velocity, which is indicative of the efficiency of the postural actions generated in stabilizing posture, no difference appeared between the two sessions post-fatigue. This highlights an optimization of the postural actions when subjects first moved in self-paced conditions, smaller postural muscle activation levels resulting in similar postural consequences. In conclusion, the level of neuromuscular activity associated with the postural control is affected and can be optimized by the initial movement IC experienced post-fatigue. Beyond the fundamental contributions arising from these results, we point out potential applications for trainers and sports instructors.  相似文献   

18.
In comparative anatomical studies of the shoulder, the humeral retractors are often grouped together as propulsive muscles, which are important in the propulsive stroke of the forelimb during quadrupedal locomotion. Electromyographic (EMG) analyses of these muscles in opossums, cats, and dogs in general have confirmed such conclusions. An EMG study of chimpanzee shoulder muscles during knuckle-walking found, however, that the humeral retractors are either inactive or perform a function unrelated to propulsion (Larson & Stern, 1987). This contrast in muscle recruitment patterns between chimpanzees and more "typical" mammalian quadrupeds was attributed to the derived morphology of the chimpanzee shoulder. The present study examines the activity patterns of the humeral retractors in the vervet monkey, a primate more closely resembling nonprimate mammals in its shoulder morphology. The results of this EMG analysis show that despite the significant differences in anatomy between chimpanzees and vervets, the two species display very similar muscle recruitment patterns during quadrupedalism, and there is evidence for this same pattern in other species of primates. These differences in muscle activity patterns between primates and nonprimate mammals may be related to changes in the neurological control of locomotion in primates due to the evolutionary development of manipulative abilities in the primate forelimb.  相似文献   

19.
Tight frequency-to-amplitude relationships are observed in spontaneous human steady gait. They can be modified, if required; that flexibility forms a fundamental basis of the intentional adaptive capabilities of locomotion. In the present experiments, the processes underlying that flexibility were investigated at both the level of joint kinematics and the level of neuromuscular synergies. Subjects (N = 4) walked at the same speed either with a preferred or a nonpreferred frequency-to-amplitude relationship (i.e., constrained, short steps at a high frequency [COS condition] or constrained, long steps at a low frequency [COL condition]); their swing and stance phases were separately analyzed. In the COS condition, increases in EMG activity were specifically required during the swing phase. In the COL condition, several muscles required increases in EMG activity during the stance phase, but decreases of the hamstring muscles were needed during the swing phase. Whereas, in preferred walking, modification of the frequency affects the EMG patterns globally (the gain increasing with the frequency in both the stance and swing phases), the present results show that changing the frequency in a constrained manner either affects the swing phase specifically or affects both phases, but in the opposite direction. That finding indicates that a separate control is needed in both the swing and the stance phases.  相似文献   

20.
Biomechanical motor patterns in normal walking   总被引:10,自引:0,他引:10  
Motor patterns in normal human gait are evident in several biomechanical and EMG analyses over the stride period. Some of these patterns are invariant over the stride period with changes of cadence, whole others are closely correlated with speed changes. The findings for slow, natural, and fast walking are summarized: 1. Joint angle patterns over the stride period are quite invariant, and do not change with cadence; 2. Moment of force patterns at the ankle are least variable and quite consistent at all speeds; 3. A recently defined support moment is quite consistent at all speeds. 4. Moments at the knee and hip are highly variable at all cadences but decrease their variability as cadence increases; 5. Mechanical power patterns at all joints show consistent timing over the stride period; 6. EMG profiles of 5 muscles show consistent timing over the stride, but the amplitude increases as walking speed increases. Arguments are presented to support the concept that walking speed is largely controlled by gain and that the timing of the motor patterns, which is extremely tightly synchronized with the anatomical position, is under major afferent control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号