首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schechter  Eric 《Studia Logica》2004,77(1):117-128
Relevant logic is a proper subset of classical logic. It does not include among its theorems any ofpositive paradox A (B A)mingle A (A A)linear order (A B) (B A)unrelated extremes (A ) (B B¯)This article shows that those four formulas have different effects when added to relevant logic, and then lists many formulas that have the same effect as positive paradox or mingle.  相似文献   

2.
The logic CE (for Classical E) results from adding Boolean negation to Anderson and Belnap"s logic E. This paper shows that CE is not a conservative extension of E.  相似文献   

3.
Marx  Maarten 《Studia Logica》2002,72(2):233-252
The complexity of the satisfiability problems of various arrow logics and cylindric modal logics is determined. As is well known, relativising these logics makes them decidable. There are several parameters that can be set in such a relativisation. We focus on the following three: the number of variables involved, the similarity type and the kind of relativised models considered. The complexity analysis shows the importance and relevance of these parameters.  相似文献   

4.
We begin to fill a lacuna in the relevance logic enterprise by providing a foundational analysis of identity in relevance logic. We consider rival interpretations of identity in this context, settling on the relevant indiscernibility interpretation, an interpretation related to Dunn's relevant predication project. We propose a general test for the stability of an axiomatisation of identity, relative to this interpretation, and we put various axiomatisations to this test. We fill our discussion out with both formal and philosophical remarks on identity in relevance logic.  相似文献   

5.
Curiously, though he provides in Making It Explicit (MIE) elaborate accounts of various representational idioms, of anaphora and deixis, and of quantification, Robert Brandom nowhere attempts to lay out how his understanding of content and his view of the role of logical idioms combine in even the simplest cases of what he calls paradigmatic logical vocabulary. That is, Brandom has a philosophical account of content as updating potential – as inferential potential understood in the sense of commitment or entitlement preservation – and says that the point of logical vocabulary is to make available the expressive resources to make explicit such semantic structures as arise from discursive scorekeeping practice. Thus, one would expect an account of the updating or inferential potential of sentences involving logical vocabulary, an account which is such as to assign to those sentences the inferential significance necessary for this expressive job. In short, one would expect a semantics of logical vocabulary – &, , – in terms of the difference an assertion of a sentence involving it makes to the atomic score of a linguistic agent, and a completeness proof for the logic generated by this semantics. Despite this, no such semantics is given in MIE. It is in the current paper.  相似文献   

6.
It is known that for any subdirectly irreducible finite Heyting algebra A and any Heyting algebra B, A is embeddable into a quotient algebra of B, if and only if Jankov’s formula χ A for A is refuted in B. In this paper, we present an infinitary extension of the above theorem given by Jankov. More precisely, for any cardinal number κ, we present Jankov’s theorem for homomorphisms preserving infinite meets and joins, a class of subdirectly irreducible complete κ-Heyting algebras and κ-infinitary logic, where a κ-Heyting algebra is a Heyting algebra A with # ≥  κ and κ-infinitary logic is the infinitary logic such that for any set Θ of formulas with # Θ ≥  κ, ∨Θ and ∧Θ are well defined formulas.  相似文献   

7.
Hoogland  Eva  Marx  Maarten 《Studia Logica》2002,70(3):373-409
The guarded fragment (GF) was introduced by Andréka, van Benthem and Németi as a fragment of first order logic which combines a great expressive power with nice, modal behavior. It consists of relational first order formulas whose quantifiers are relativized by atoms in a certain way. Slightly generalizing the admissible relativizations yields the packed fragment (PF). In this paper we investigate interpolation and definability in these fragments. We first show that the interpolation property of first order logic fails in restriction to GF and PF. However, each of these fragments turns out to have an alternative interpolation property that closely resembles the interpolation property usually studied in modal logic. These results are strong enough to entail the Beth definability property for GF and PF. Even better, every guarded or packed finite variable fragment has the Beth property. For interpolation, we characterize exactly which finite variable fragments of GF and PF enjoy this property.  相似文献   

8.
We give an account of some relationships between the principles of Constant and Atom Exchangeability and various generalizations of the Principle of Instantial Relevance within the framework of Inductive Logic. In particular we demonstrate some surprising and somewhat counterintuitive dependencies of these relationships on ostensibly unimportant parameters, such as the number of predicates in the overlying language. Supported by a UK Engineering and Physical Sciences Research Council (EPSRC) Research Studentship.  相似文献   

9.
Combinators and structurally free logic   总被引:2,自引:0,他引:2  
  相似文献   

10.
Diamonds are a Philosopher's Best Friends   总被引:1,自引:0,他引:1  
The knowability paradox is an instance of a remarkable reasoning pattern (actually, a pair of such patterns), in the course of which an occurrence of the possibility operator, the diamond, disappears. In the present paper, it is pointed out how the unwanted disappearance of the diamond may be escaped. The emphasis is not laid on a discussion of the contentious premise of the knowability paradox, namely that all truths are possibly known, but on how from this assumption the conclusion is derived that all truths are, in fact, known. Nevertheless, the solution offered is in the spirit of the constructivist attitude usually maintained by defenders of the anti-realist premise. In order to avoid the paradoxical reasoning, a paraconsistent constructive relevant modal epistemic logic with strong negation is defined semantically. The system is axiomatized and shown to be complete.  相似文献   

11.
Weaver  George 《Studia Logica》2000,64(2):173-192
A Dedekind algebra is an order pair (B, h) where B is a non-empty set and h is a similarity transformation on B. Each Dedekind algebra can be decomposed into a family of disjoint, countable subalgebras called the configurations of the algebra. There are 0 isomorphism types of configurations. Each Dedekind algebra is associated with a cardinal-valued function on called its configuration signature. The configuration signature counts the number of configurations in each isomorphism type which occur in the decomposition of the algebra. Two Dedekind algebras are isomorphic iff their configuration signatures are identical. It is shown that configuration signatures can be used to characterize the homogeneous, universal and homogeneous-universal Dedekind algebras. This characterization is used to prove various results about these subclasses of Dedekind algebras.  相似文献   

12.
Logic Games are Complete for Game Logics   总被引:1,自引:0,他引:1  
van Benthem  Johan 《Studia Logica》2003,75(2):183-203
Game logics describe general games through powers of players for forcing outcomes. In particular, they encode an algebra of sequential game operations such as choice, dual and composition. Logic games are special games for specific purposes such as proof or semantical evaluation for first-order or modal languages. We show that the general algebra of game operations coincides with that over just logical evaluation games, whence the latter are quite general after all. The main tool in proving this is a representation of arbitrary games as modal or first-order evaluation games. We probe how far our analysis extends to product operations on games. We also discuss some more general consequences of this new perspective for standard logic.  相似文献   

13.
This paper presents a neighborhood semantics for logics of entailment. It begins with a minimal system Min that expresses the most fundamental assumptions about the entailment relation, and continues by examining various extensions that reflect further assumptions that might be made about entailment. This leads first to the logic B that is the basic relevant logic, and then to more powerful systems. All of these logics are proved to be sound and strongly complete. With B the neighborhood semantics meets the Routley–Meyer relational semantics for relevant logic; these connections are examined. The minimal and basic entailment logics are shown to have the finite model property, and hence to be decidable.  相似文献   

14.
Hodkinson  Ian 《Studia Logica》2002,70(2):205-240
We show that the loosely guarded and packed fragments of first-order logic have the finite model property. We use a construction of Herwig and Hrushovski. We point out some consequences in temporal predicate logic and algebraic logic.  相似文献   

15.
We compare fork arrow logic, an extension of arrow logic, and its natural first-order counterpart (the correspondence language) and show that both have the same expressive power. Arrow logic is a modal logic for reasoning about arrow structures, its expressive power is limited to a bounded fragment of first-order logic. Fork arrow logic is obtained by adding to arrow logic the fork modality (related to parallelism and synchronization). As a result, fork arrow logic attains the expressive power of its first-order correspondence language, so both can express the same input–output behavior of processes.  相似文献   

16.
MV-Algebras and Quantum Computation   总被引:2,自引:1,他引:1  
We introduce a generalization of MV algebras motivated by the investigations into the structure of quantum logical gates. After laying down the foundations of the structure theory for such quasi-MV algebras, we show that every quasi-MV algebra is embeddable into the direct product of an MV algebra and a “flat” quasi-MV algebra, and prove a completeness result w.r.t. a standard quasi-MV algebra over the complex numbers. Presented by Heinrich Wansing  相似文献   

17.
A relational model for temporal logic   总被引:1,自引:0,他引:1  
  相似文献   

18.
Mathematical modal logic: A view of its evolution   总被引:1,自引:0,他引:1  
This is a survey of the origins of mathematical interpretations of modal logics, and their development over the last century or so. It focuses on the interconnections between algebraic semantics using Boolean algebras with operators and relational semantics using structures often called Kripke models. It reviews the ideas of a number of people who independently contributed to the emergence of relational semantics, and compares them with the work of Kripke. It concludes with an account of several applications of modal model theory to mathematics and theoretical computer science.  相似文献   

19.
In this paper we show that the class of fork squares has a complete orthodox axiomatization in fork arrow logic (FAL). This result may be seen as an orthodox counterpart of Venema's non-orthodox axiomatization for the class of squares in arrow logic. FAL is the modal logic of fork algebras (FAs) just as arrow logic is the modal logic of relation algebras (RAs). FAs extend RAs by a binary fork operator and are axiomatized by adding three equations to RAs equational axiomatization. A proper FA is an algebra of relations where the fork is induced by an injective operation coding pair formation. In contrast to RAs, FAs are representable by proper ones and their equational theory has the expressive power of full first-order logic. A square semantics (the set of arrows is U×U for some set U) for arrow logic was defined by Y. Venema. Due to the negative results about the finite axiomatizability of representable RAs, Venema provided a non-orthodox finite axiomatization for arrow logic by adding a new rule governing the applications of a difference operator. We address here the question of extending the type of relational structures to define orthodox axiomatizations for the class of squares. Given the connections between this problem and the finitization problem addressed by I. Németi, we suspect that this cannot be done by using only logical operations. The modal version of the FA equations provides an orthodox axiomatization for FAL which is complete in view of the representability of FAs. Here we review this result and carry it further to prove that this orthodox axiomatization for FAL also axiomatizes the class of fork squares.  相似文献   

20.
We consider the decision problem for cases of first-order temporal logic with function symbols and without equality. The monadic monodic fragment with flexible functions can be decided with EXPSPACE-complete complexity. A single rigid function is sufficient to make the logic not recursively enumerable. However, the monadic monodic fragment with rigid functions, where no two distinct terms have variables bound by the same quantifier, is decidable and EXPSPACE-complete. Presented by Robert Goldblatt  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号